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Figure 1: Our system automatically constructs a rough 3D environment from a single image by learning a statistical model of geometric
classes from a set of training images. A photograph of the University Center at Carnegie Mellon is shown on the left, and three novel views
from an automatically generated 3D model are to its right.

Abstract

This paper presents a fully automatic method for creating a 3D
model from a single photograph. The model is made up of sev-
eral texture-mapped planar billboards and has the complexity of a
typical children’s pop-up book illustration. Our main insight is that
instead of attempting to recover precise geometry, we statistically
model geometric classes defined by their orientations in the scene.
Our algorithm labels regions of the input image into coarse cate-
gories: “ground”, “sky”, and “vertical”. These labels are then used
to “cut and fold” the image into a pop-up model using a set of sim-
ple assumptions. Because of the inherent ambiguity of the problem
and the statistical nature of the approach, the algorithm is not ex-
pected to work on every image. However, it performs surprisingly
well for a wide range of scenes taken from a typical person’s photo
album.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture
1.4.8 [Image Processing and Computer Vision]: Scene Analysis—
Surface Fitting;

Keywords: image-based rendering, single-view reconstruction,
machine learning, image segmentation

1 Introduction

Major advances in the field of image-based rendering during the
past decade have made the commercial production of virtual models
from photographs a reality. Impressive image-based walkthrough
environments can now be found in many popular computer games
and virtual reality tours. However, the creation of such environ-
ments remains a complicated and time-consuming process, often
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requiring special equipment, a large number of photographs, man-
ual interaction, or all three. As a result, it has largely been left to
the professionals and ignored by the general public.

We believe that many more people would enjoy the experience of
virtually walking around in their own photographs. Most users,
however, are just not willing to go through the effort of learning a
new interface and taking the time to manually specify the model
for each scene. Consider the case of panoramic photo-mosaics: the
underlying technology for aligning photographs (manually or semi-
automatically) has been around for years, yet only the availability of
fully automatic stitching tools has really popularized the practice.

In this paper, we present a method for creating virtual walkthroughs
that is completely automatic and requires only a single photograph
as input. Our approach is similar to the creation of a pop-up illus-
tration in a children’s book: the image is laid on the ground plane
and then the regions that are deemed to be vertical are automatically
“popped up” onto vertical planes. Just like the paper pop-ups, our
resulting 3D model is quite basic, missing many details. Nonethe-
less, a large number of the resulting walkthroughs look surprisingly
realistic and provide a fun “browsing experience” (Figure 1).

The target application scenario is that the photos would be
processed as they are downloaded from the camera into the com-
puter and the users would be able to browse them using a 3D viewer
(we use a simple VRML player) and pick the ones they like. Just
like automatic photo-stitching, our algorithm is not expected to
work well on every image. Some results would be incorrect, while
others might simply be boring. This fits the pattern of modern dig-
ital photography – people take lots of pictures but then only keep a
few “good ones”. The important thing is that the user needs only to
decide whether to keep the image or not.

1.1 Related Work

The most general image-based rendering approaches, such as
Quicktime VR [Chen 1995], Lightfields [Levoy and Hanrahan
1996], and Lumigraph [Gortler et al. 1996] all require a huge num-
ber of photographs as well as special equipment. Popular urban
modeling systems such as Façade [Debevec et al. 1996], Photo-
Builder [Cipolla et al. 1999] and REALVIZ ImageModeler greatly
reduce the number of images required and use no special equipment
(although cameras must still be calibrated), but at the expense of
considerable user interaction and a specific domain of applicability.

Several methods are able to perform user-guided modeling from a



(a) input image (b) superpixels (c) constellations (d) labeling (e) novel view
Figure 2: 3D Model Estimation Algorithm. To obtain useful statistics for modeling geometric classes, we must first find uniformly-labeled
regions in the image by computing superpixels (b) and grouping them into multiple constellations (c). We can then generate a powerful set
of statistics and label the image based on models learned from training images. From these labels, we can construct a simple 3D model (e) of
the scene. In (b) and (c), colors distinguish between separate regions; in (d) colors indicate the geometric labels: ground, vertical, and sky.

single image. [Liebowitz et al. 1999; Criminisi et al. 2000] offer
the most accurate (but also the most labor-intensive) approach, re-
covering a metric reconstruction of an architectural scene by using
projective geometry constraints [Hartley and Zisserman 2004] to
compute 3D locations of user-specified points given their projected
distances from the ground plane. The user is also required to spec-
ify other constraints such as a square on the ground plane, a set of
parallel “up” lines and orthogonality relationships. Most other ap-
proaches forgo the goal of a metric reconstruction, focusing instead
on producing perceptually pleasing approximations. [Zhang et al.
2001] models free-form scenes by letting the user place constraints,
such as normal directions, anywhere on the image plane and then
optimizing for the best 3D model to fit these constraints. [Ziegler
et al. 2003] finds the maximum-volume 3D model consistent with
multiple manually-labeled images. Tour into the Picture [Horry
et al. 1997], the main inspiration for this work, models a scene
as an axis-aligned box, a sort of theater stage, with floor, ceiling,
backdrop, and two side planes. An intuitive “spidery mesh” inter-
face allows the user to specify the coordinates of this box and its
vanishing point. Foreground objects are manually labeled by the
user and assigned to their own planes. This method produces im-
pressive results but works only on scenes that can be approximated
by a one-point perspective, since the front and back of the box are
assumed to be parallel to the image plane. This is a severe limita-
tion (that would affect most of the images in this paper, including
Figure 1(left)) which has been partially addressed by [Kang et al.
2001] and [Oh et al. 2001], but at the cost of a less intuitive inter-
face.

Automatic methods exist to reconstruct certain types of scenes from
multiple images or video sequences (e.g. [Nistér 2001; Pollefeys
et al. 2004]), but, to the best of our knowledge, no one has yet
attempted automatic single-view modeling.

1.2 Intuition

Consider the photograph in Figure 1(left). Humans can easily grasp
the overall structure of the scene – sky, ground, relative positions of
major landmarks. Moreover, we can imagine reasonably well what
this scene would look like from a somewhat different viewpoint,
even if we have never been there. This is truly an amazing ability
considering that, geometrically speaking, a single 2D image gives
rise to an infinite number of possible 3D interpretations! How do
we do it?

The answer is that our natural world, despite its incredible richness
and complexity, is actually a reasonably structured place. Pieces of
solid matter do not usually hang in mid-air but are part of surfaces
that are usually smoothly varying. There is a well-defined notion
of orientation (provided by gravity). Many structures exhibit high
degree of similarity (e.g. texture), and objects of the same class
tend to have many similar characteristics (e.g. grass is usually green
and can most often be found on the ground). So, while an image

offers infinitely many geometrical interpretations, most of them can
be discarded because they are extremely unlikely given what we
know about our world. This knowledge, it is currently believed, is
acquired through life-long learning, so, in a sense, a lot of what we
consider human vision is based on statistics rather than geometry.

One of the main contributions of this paper lies in posing the classic
problem of geometric reconstruction in terms of statistical learning.
Instead of trying to explicitly extract all the required geometric pa-
rameters from a single image (a daunting task!), our approach is to
rely on other images (the training set) to furnish this information in
an implicit way, through recognition. However, unlike most scene
recognition approaches which aim to model semantic classes, such
as cars, vegetation, roads, or buildings [Everingham et al. 1999;
Konishi and Yuille 2000; Singhal et al. 2003], our goal is to model
geometric classes that depend on the orientation of a physical ob-
ject with relation to the scene. For instance, a piece of plywood
lying on the ground and the same piece of plywood propped up by
a board have two different geometric classes but the same semantic
class. We produce a statistical model of geometric classes from a
set of labeled training images and use that model to synthesize a 3D
scene given a new photograph.

2 Overview

We limit our scope to dealing with outdoor scenes (both natural and
man-made) and assume that a scene is composed of a single ground
plane, piece-wise planar objects sticking out of the ground at right
angles, and the sky. Under this assumption, we can construct a
coarse, scaled 3D model from a single image by classifying each
pixel as ground, vertical or sky and estimating the horizon position.
Color, texture, image location, and geometric features are all useful
cues for determining these labels. We generate as many potentially
useful cues as possible and allow our machine learning algorithm
(decision trees) to figure out which to use and how to use them.
Some of these cues (e.g., RGB values) are quite simple and can
be computed directly from pixels, but others, such as geometric
features require more spatial support to be useful. Our approach
is to gradually build our knowledge of scene structure while being
careful not to commit to assumptions that could prevent the true
solution from emerging. Figure 2 illustrates our approach.

Image to Superpixels
Without knowledge of the scene’s structure, we can only compute
simple features such as pixel colors and filter responses. The first
step is to find nearly uniform regions, called “superpixels” (Figure
2(b)), in the image. The use of superpixels improves the efficiency
and accuracy of finding large single-label regions in the image. See
Section 4.1 for details.

Superpixels to Multiple Constellations
An image typically contains hundreds of superpixels over which we



can compute distributions of color and texture. To compute more
complex features, we form groups of superpixels, which we call
“constellations” (Figure 2(c)), that are likely to have the same label
(based on estimates obtained from training data). These constel-
lations span a sufficiently large portion of the image to allow the
computation of all potentially useful statistics. Ideally, each con-
stellation would correspond to a physical object in the scene, such
as a tree, a large section of ground, or the sky. We cannot guarantee,
however, that a constellation will describe a single physical object
or even that all of its superpixels will have the same label. Due to
this uncertainty, we generate several overlapping sets of possible
constellations (Section 4.2) and use all sets to help determine the
final labels.

Multiple Constellations to Superpixel Labels
The greatest challenge of our system is to determine the geomet-
ric label of an image region based on features computed from its
appearance. We take a machine learning approach, modeling the
appearance of geometric classes from a set of training images. For
each constellation, we estimate the likelihood of each of the three
possible labels (“ground”, “vertical”, and “sky”) and the confidence
that all of the superpixels in the constellation have the same label.
Each superpixel’s label is then inferred from the likelihoods of the
constellations that contain that superpixel (Section 4.3).

Superpixel Labels to 3D Model
We can construct a 3D model of a scene directly from the geometric
labels of the image (Section 5). Once we have found the image pixel
labels (ground, vertical, or sky), we can estimate where the objects
lie in relation to the ground by fitting the boundary of the bottom
of the vertical regions with the ground. The horizon position is
estimated from geometric features and the ground labels. Given the
image labels, the estimated horizon, and our single ground plane
assumption, we can map all of the ground pixels onto that plane.
We assume that the vertical pixels correspond to physical objects
that stick out of the ground and represent each object with a small
set of planar billboards. We treat sky as non-solid and remove it
from our model. Finally, we texture-map the image onto our model
(Figure 2(e)).

3 Features for Geometric Classes

We believe that color, texture, location in the image, shape, and pro-
jective geometry cues are all useful for determining the geometric
class of an image region (see Table 1 for a complete list).

Color is valuable in identifying the material of a surface. For in-
stance, the sky is usually blue or white, and the ground is often
green (grass) or brown (dirt). We represent color using two color
spaces: RGB and HSV (sets C1-C4 in Table 1). RGB allows the
“blueness” or “greenness” of a region to be easily extracted, while
HSV allows perceptual color attributes such as hue and “grayness”
to be measured.

Texture provides additional information about the material of a sur-
face. For example, texture helps differentiate blue sky from wa-
ter and green tree leaves from grass. Texture is represented using
derivative of oriented Gaussian filters (sets T1-T4) and the 12 most
mutually dissimilar of the universal textons (sets T5-T7) from the
Berkeley segmentation dataset [Martin et al. 2001].

Location in the image also provides strong cues for distinguishing
between ground (tends to be low in the image), vertical structures,
and sky (tends to be high in the image). We normalize the pixel
locations by the width and height of the image and compute the
mean (L1) and 10th and 90th percentile (L2) of the x- and y-location
of a region in the image. Additionally, region shape (L4-L7) helps

Feature Descriptions Num Used

Color 15 15
C1. RGB values: mean 3 3
C2. HSV values: conversion from mean RGB values 3 3
C3. Hue: histogram (5 bins) and entropy 6 6
C4. Saturation: histogram (3 bins) and entropy 3 3
Texture 29 13
T1. DOOG Filters: mean abs response 12 3
T2. DOOG Filters: mean of variables in T1 1 0
T3. DOOG Filters: id of max of variables in T1 1 1
T4. DOOG Filters: (max - median) of variables in T1 1 1
T5. Textons: mean abs response 12 7
T6. Textons: max of variables in T5 1 0
T7. Textons: (max - median) of variables in T5 1 1
Location and Shape 12 10
L1. Location: normalized x and y, mean 2 2
L2. Location: norm. x and y, 10th and 90th percentile 4 4
L3. Location: norm. y wrt horizon, 10th and 90th pctl 2 2
L4. Shape: number of superpixels in constellation 1 1
L5. Shape: number of sides of convex hull 1 0
L6. Shape: num pixels/area(convex hull) 1 1
L7. Shape: whether the constellation region is contiguous 1 0
3D Geometry 35 28
G1. Long Lines: total number in constellation region 1 1
G2. Long Lines: % of nearly parallel pairs of lines 1 1
G3. Line Intersection: hist. over 12 orientations, entropy 13 11
G4. Line Intersection: % right of center 1 1
G5. Line Intersection: % above center 1 1
G6. Line Intersection: % far from center at 8 orientations 8 4
G7. Line Intersection: % very far from center at 8 orientations 8 5
G8. Texture gradient: x and y “edginess” (T2) center 2 2

Table 1: Features for superpixels and constellations. The “Num”
column gives the number of variables in each set. The simpler fea-
tures (sets C1-C2,T1-T7, and L1) are used to represent superpix-
els, allowing the formation of constellations over which the more
complicated features can be calculated. All features are available
to our constellation classifier, but the classifier (boosted decision
trees) actually uses only a subset. Features may not be selected
because they are not useful for discrimination or because their in-
formation is contained in other features. The “Used” column shows
how many variables from each set are actually used in the classifier.

distinguish vertical regions (often roughly convex) from ground and
sky regions (often non-convex and large).

3D Geometry features help determine the 3D orientation of sur-
faces. Knowledge of the vanishing line of a plane completely spec-
ifies its 3D orientation relative to the viewer [Hartley and Zisser-
man 2004], but such information cannot easily be extracted from
outdoor, relatively unstructured images. By computing statistics of
straight lines (G1-G2) and their intersections (G3-G7) in the image,
our system gains information about the vanishing points of a surface
without explicitly computing them. Our system finds long, straight
edges in the image using the method of [Kosecka and Zhang 2002].
The intersections of nearly parallel lines (within π/8 radians) are
radially binned, according to the direction to the intersection point
from the image center (8 orientations) and the distance from the
image center (thresholds of 1.5 and 5.0 times the image size). The
texture gradient can also provide orientation cues even for natural
surfaces without parallel lines. We capture texture gradient infor-
mation (G8) by comparing a region’s center of mass with its center
of “texturedness”.

We also estimate the horizon position from the intersections of
nearly parallel lines by finding the position that minimizes the L 1

2 -
distance (chosen for its robustness to outliers) from all of the in-
tersection points in the image. This often provides a reasonable
estimate of the horizon in man-made images, since these scenes
contain many lines parallel to the ground plane (thus having van-



ishing points on the horizon in the image). Feature set G3 relates
the coordinates of the constellation region relative to the estimated
horizon, which is often more relevant than the absolute image co-
ordinates.

4 Labeling the Image

Many geometric cues become useful only when something is
known about the structure of the scene. We gradually build our
structural knowledge of the image, from pixels to superpixels to
constellations of superpixels. Once we have formed multiple sets
of constellations, we estimate the constellation label likelihoods and
the likelihood that each constellation is homogeneously labeled,
from which we infer the most likely geometric labels of the su-
perpixels.

4.1 Obtaining Superpixels

Initially, an image is represented simply by a 2D array of RGB
pixels. Our first step is to form superpixels from those raw pixel in-
tensities. Superpixels correspond to small, nearly-uniform regions
in the image and have been found useful by other computer vision
and graphics researchers [Tao et al. 2001; Ren and Malik 2003; Li
et al. 2004]. The use of superpixels improves the computational
efficiency of our algorithm and allows slightly more complex sta-
tistics to be computed for enhancing our knowledge of the image
structure. Our implementation uses the over-segmentation tech-
nique of [Felzenszwalb and Huttenlocher 2004].

4.2 Forming Constellations

Next, we group superpixels that are likely to share a common geo-
metric label into “constellations”. Since we cannot be completely
confident that these constellations are homogeneously labeled, we
find multiple constellations for each superpixel in the hope that at
least one will be correct. The superpixel features (color, texture,
location) are not sufficient to determine the correct label of a super-
pixel but often allow us to determine whether a pair of superpixels
has the same label (i.e. belong in the same constellation).

To form constellations, we initialize by assigning one randomly se-
lected superpixel to each of Nc constellations. We then iteratively
assign each remaining superpixel to the constellation most likely
to share its label, maximizing the average pairwise log-likelihoods
with other superpixels in the constellation:

S(C) =
Nc

∑
k

1
nk(1−nk)

∑
i, j∈Ck

logP(yi = y j||zi− z j|) (1)

where nk is the number of superpixels in constellation Ck. P(yi =
y j||zi − z j|) is the estimated probability that two superpixels have
the same label, given the absolute difference of their feature vectors
(see Section 4.4 for how we estimate this likelihood from training
data). By varying the number of constellations (from 3 to 25 in our
implementation), we explore the trade-off of variance, from poor
spatial support, and bias, from risk of mixed labels in a constella-
tion.

4.3 Geometric Classification

For each constellation, we estimate the confidence in each geomet-
ric label (label likelihood) and whether all superpixels in the con-

1. For each training image:
(a) Compute superpixels (Sec 4.1)
(b) Compute superpixel features (Table 1)

2. Estimate pairwise-likelihood function (Eq 3)
3. For each training image:

(a) Form multiple sets of constellations for varying Nc (Sec 4.2)
(b) Label each constellation according to superpixel ground truth
(c) Compute constellation features (Table 1)

4. Estimate constellation label and homogeneity likelihood functions
(Sec 4.3)

Figure 3: Training procedure.

stellation have the same label (homogeneity likelihood). We esti-
mate the likelihood of a superpixel label by marginalizing over the
constellation likelihoods1:

P(yi = t|x) = ∑
k:si∈Ck

P(yk = t|xk,Ck)P(Ck|xk) (2)

where si is the ith superpixel and yi is the label of si. Each su-
perpixel is assigned its most likely label. Ideally, we would mar-
ginalize over the exponential number of all possible constellations,
but we approximate this by marginalizing over several likely ones
(Section 4.2). P(yk = t|xk,Ck) is the label likelihood, and P(Ck|xk)
is the homogeneity likelihood for each constellation Ck that con-
tains si. The constellation likelihoods are based on the features xk
computed over the constellation’s spatial support. In the next sec-
tion, we describe how these likelihood functions are learned from
training data.

4.4 Training

Training Data
The likelihood functions used to group superpixels and label con-
stellations are learned from training images. We gathered a set of 82
images of outdoor scenes (our entire training set with labels is avail-
able online) that are representative of the images that users choose
to make publicly available on the Internet. These images are often
highly cluttered and span a wide variety of natural, suburban, and
urban scenes. Each training image is over-segmented into super-
pixels, and each superpixel is given a ground truth label according
to its geometric class. The training process is outlined in Figure 3.

Superpixel Same-Label Likelihoods
To learn the likelihood P(yi = y j||zi − z j|) that two superpixels
have the same label, we sample 2,500 same-label and different-
label pairs of superpixels from our training data. From this data,
we estimate the pairwise likelihood function using the logistic re-
gression form of Adaboost [Collins et al. 2002]. Each weak learner
fm is based on naive density estimates of the absolute feature dif-
ferences:

fm(z1,z2) =
n f

∑
i

log
Pm(y1 = y2, |z1i− z2i|)
Pm(y1 6= y2, |z1i− z2i|)

(3)

where z1 and z2 are the features from a pair of superpixels, y1 and
y2 are the labels of the superpixels, and n f is the number of features.
Each likelihood function Pm in the weak learner is obtained using
kernel density estimation [Duda et al. 2000] over the mth weighted
distribution. Adaboost combines an ensemble of estimators to im-
prove accuracy over any single density estimate.

Constellation Label and Homogeneity Likelihoods
To learn the label likelihood P(yk = t|xk,Ck) and homogeneity like-

1This formulation makes the dubious assumption that there is only one
“correct” constellation for each superpixel.



(a) Fitted Segments (b) Cuts and Folds
Figure 4: From the noisy geometric labels, we fit line segments
to the ground-vertical label boundary (a) and form those segments
into a set of polylines. We then “fold” (red solid) the image along
the polylines and “cut” (red dashed) upward at the endpoints of the
polylines and at ground-sky and vertical-sky boundaries (b). The
polyline fit and the estimated horizon position (yellow dotted) are
sufficient to “pop-up” the image into a simple 3D model.

Partition the pixels labeled as vertical into connected regions
For each connected vertical region:

1. Find ground-vertical boundary (x,y) locations p
2. Iteratively find best-fitting line segments until no segment contains

more than mp points:
(a) Find best line L in p using Hough transform
(b) Find largest set of points pL ∈ p within distance dt of L with no

gap between consecutive points larger than gt

(c) Remove pL from p
3. Form set of polylines from line segments

(a) Remove smaller of completely overlapping (in x-axis) segments
(b) Sort segments by median of points on segment along x-axis
(c) Join consecutive intersecting segments into polyline if the inter-

section occurs between segment medians
(d) Remove smaller of any overlapping polylines

Fold along polylines
Cut upward from polyline endpoints, at ground-sky and vertical-sky boundaries
Project planes into 3D coordinates and texture map

Figure 5: Procedure for determining the 3D model from labels.

lihood P(Ck|xk), we form multiple sets of constellations for the su-
perpixels in our training images using the learned pairwise func-
tion. Each constellation is then labeled as “ground”, “vertical”,
“sky”, or “mixed” (when the constellation contains superpixels of
differing labels), according to the ground truth. The likelihood
functions are estimated using the logistic regression version of Ad-
aboost [Collins et al. 2002] with weak learners based on eight-node
decision trees [Quinlan 1993; Friedman et al. 2000]. Each deci-
sion tree weak learner selects the best features to use (based on the
current weighted distribution of examples) and estimates the con-
fidence in each label based on those features. To place emphasis
on correctly classifying large constellations, the weighted distribu-
tion is initialized to be proportional to the percentage of image area
spanned by each constellation.

The boosted decision tree estimator outputs a confidence for each of
“ground”, “vertical”, “sky”, and “mixed”, which are normalized to
sum to one. The product of the label and homogeneity likelihoods
for a particular geometric label is then given by the normalized con-
fidence in “ground”, “vertical”, or “sky”.

5 Creating the 3D Model

To create a 3D model of the scene, we need to determine the cam-
era parameters and where each vertical region intersects the ground.
Once these are determined, constructing the scene is simply a mat-
ter of specifying plane positions using projective geometry and tex-
ture mapping from the image onto the planes.

5.1 Cutting and Folding

We construct a simple 3D model by making “cuts” and “folds” in
the image based on the geometric labels (see Figure 4). Our model
consists of a ground plane and planar objects at right angles to the
ground. Even given these assumptions and the correct labels, many
possible interpretations of the 3D scene exist. We need to partition
the vertical regions into a set of objects (especially difficult when
objects regions overlap in the image) and determine where each ob-
ject meets the ground (impossible when the ground-vertical bound-
ary is obstructed in the image). We have found that, qualitatively, it
is better to miss a fold or a cut than to make one where none exists
in the true model. Thus, in the current implementation, we do not
attempt to segment overlapping vertical regions, placing folds and
making cuts conservatively.

As a pre-processing step, we set any superpixels that are labeled as
ground or sky and completely surrounded by non-ground or non-
sky pixels to the most common label of the neighboring superpixels.
In our tests, this affects no more than a few superpixels per image
but reduces small labeling errors (compare the labels in Figures 2(d)
and 4(a)).

Figure 5 outlines the process for determining cuts and folds from
the geometric labels. We divide the vertically labeled pixels into
disconnected or loosely connected regions using the connected
components algorithm (morphological erosion and dilation sepa-
rate loosely connected regions). For each region, we fit a set of line
segments to the region’s boundary with the labeled ground using
the Hough transform [Duda and Hart 1972]. Next, within each re-
gion, we form the disjoint line segments into a set of polylines. The
pre-sorting of line segments (step 3(b)) and removal of overlapping
segments (steps 3(a) and 3(d)) help make our algorithm robust to
small labeling errors.

If no line segment can be found using the Hough transform, a single
polyline is estimated for the region by a simple method. The poly-
line is initialized as a segment from the left-most to the right-most
boundary points. Segments are then greedily split to minimize the
L1-distance of the fit to the points, with a maximum of three seg-
ments in the polyline.

We treat each polyline as a separate object, modeled with a set of
connected planes that are perpendicular to the ground plane. The
ground is projected into 3D-coordinates using the horizon position
estimate and fixed camera parameters. The ground intersection of
each vertical plane is determined by its segment in the polyline; its
height is specified by the region’s maximum height above the seg-
ment in the image and the camera parameters. To map the texture
onto the model, we create a ground image and a vertical image, with
non-ground and non-vertical pixels having alpha values of zero in
each respective image. We feather the alpha band of the vertical
image and output a texture-mapped VRML model that allows the
user to explore his image.

5.2 Camera Parameters

To obtain true 3D world coordinates, we would need to know the
intrinsic and extrinsic camera parameters. We can, however, create
a reasonable scaled model by estimating the horizon line (giving the
angle of the camera with respect to the ground plane) and setting the
remaining parameters to constants. We assume zero skew and unit
affine ratio, set the field of view to 0.768 radians (the focal length in
EXIF metadata can be used instead of the default, when available),
and arbitrarily set the camera height to 5.0 units (which affects only
the scale of the model). The method for estimating the horizon is
described in the Section 3. If the labeled ground appears above



Figure 6: Original image taken from results of [Liebowitz et al. 1999] and two novel views from the 3D model generated by our system.
Since the roof in our model is not slanted, the model generated by Liebowitz et al. is slightly more accurate, but their model is manually
specified, while ours is created fully automatically!

1. Image → superpixels via over-segmentation (Sec 4.1)
2. Superpixels → multiple constellations (Sec 4.2)

(a) For each superpixel: compute features (Sec 1)
(b) For each pair of superpixels: compute pairwise likelihood of same

label
(c) Varying the number of constellations:

maximize average pairwise log-likelihoods within constellations
(Eq 1)

3. Multiple constellations → superpixel labels (Sec 4.3)
(a) For each constellation:

i. Compute features (Sec 1)
ii. For each label ∈ {ground, vertical, sky}: compute label

likelihood
iii. Compute likelihood of label homogeneity

(b) For each superpixel: compute label confidences (Eq 2) and assign
most likely label

4. Superpixel labels → 3D model (Sec 5)
(a) Partition vertical regions into a set of objects
(b) For each object: fit ground-object intersection with line
(c) Create VRML models by cutting out sky and “popping up” ob-

jects from the ground

Figure 7: Creating a VRML model from a single image.

the estimated position of the horizon, we abandon that estimate and
assume that the horizon lies slightly above the highest ground pixel.

6 Implementation

Figure 7 outlines the algorithm for creating a 3D model from an im-
age. We used Felzenszwalb’s [2004] publicly available code to gen-
erate the superpixels and implemented the remaining parts of the
algorithm using MATLAB. The decision tree learning and kernel
density estimation was performed using weighted versions of the
functions from the MATLAB Statistics Toolbox. We used twenty
Adaboost iterations for the learning of the pairwise likelihood and
geometric labeling functions. In our experiments, we set Nc to each
of {3,4,5,6,7,9,12,15}. We have found our labeling algorithm to be
fairly insensitive to parameter changes or small changes in the way
that the image statistics are computed.

In creating the 3D model from the labels, we set the minimum num-
ber of boundary points per segment mp to s/20, where s is the diag-
onal length of the image. We set the minimum distance for a point
to be considered part of a segment dt to s/100 and the maximum
horizontal gap between consecutive points gt to the larger of the
segment length and s/20.

The total processing time for an 800x600 image is about 1.5
minutes using unoptimized MATLAB code on a 2.13GHz Athalon
machine.

7 Results

Figure 9 shows the qualitative results of our algorithm on several
images. On a test set of 62 novel images, 87% of the pixels were
correctly labeled into ground, vertical, or sky. Even when all pixels
are correctly labeled, however, the model may still look poor if ob-
ject boundaries and object-ground intersection points are difficult
to determine. We found that about 30% of input images of outdoor
scenes result in accurate models.

Figure 8 shows four examples of typical failures. Common causes
of failure are 1) labeling error, 2) polyline fitting error, 3) model-
ing assumptions, 4) occlusion in the image, and 5) poor estimation
of the horizon position. Under our assumptions, crowded scenes
(e.g. lots of trees or people) cannot be easily modeled. Addition-
ally, our models cannot account for slanted surfaces (such as hills)
or scenes that contain multiple ground-parallel planes (e.g. steps).
Since we do not currently attempt to segment overlapping vertical
regions, occluding foreground objects cause fitting errors or are ig-
nored (made part of the ground plane). Additionally, errors in the
horizon position estimation (our current method is quite basic) can
cause angles between connected planes to be overly sharp or too
shallow. By providing a simple interface, we could allow the user
to quickly improve results by adjusting the horizon position, cor-
recting labeling errors, or segmenting vertical regions into objects.

Since the forming of constellations depends partly on a random ini-
tialization, results may vary slightly when processing the same im-
age multiple times. Increasing the number of sets of constellations
would decrease this randomness at the cost of computational time.

8 Conclusion

We set out with the goal of automatically creating visually pleasing
3D models from a single 2D image of an outdoor scene. By making
our small set of assumptions and applying a statistical framework
to the problem, we find that we are able to create beautiful models
for many images.

The problem of automatic single-view reconstruction, however, is
far from solved. Future work could include the following improve-
ments: 1) use segmentation techniques such as [Li et al. 2004] to
improve labeling accuracy near region boundaries (our initial at-
tempts at this have not been successful) or to segment out fore-
ground objects; 2) estimate the orientation of vertical regions from
the image data, allowing a more robust polyline fit; and 3) an ex-
tension of the system to indoor scenes. Our approach to automatic
single-view modeling paves the way for a new class of applications,
allowing the user to add another dimension to the enjoyment of his
photos.



(a) (b)

(c) (d)
Figure 8: Failures. Our system creates poor 3D models for these images. In (a) some foreground objects are incorrectly labeled as being in
the ground plane; others are correctly labeled as vertical but are incorrectly modeled due to overlap of vertical regions in the image. In (b),
the reflection of the building is mistaken for being vertical. Major labeling error in (c) results in a poor model. The failure (d) is due to the
inability to segment foreground objects such as close-ups of people (even the paper authors).
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Figure 9: Input images and novel views taken from automatically generated 3D models.


