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Abstract—Due to the intrinsic long-tailed distribution of objects in the
real world, we are unlikely to be able to train an object recogniz-
er/detector with many visual examples for each category. We have to
share visual knowledge between object categories to enable learning
with few or no training examples. In this paper, we show that local object
similarity information — statements that pairs of categories are similar
or dissimilar — is a very useful cue to tie different categories to each
other for effective knowledge transfer. The key insight: given a set of
object categories which are similar and a set of categories which are
dissimilar, a good object model should respond more strongly to exam-
ples from similar categories than to examples from dissimilar categories.
To exploit this category dependent similarity regularization, we develop
a regularized kernel machine algorithm to train kernel classifiers for
categories with few or no training examples. We also adapt the state-of-
the-art object detector [10] to encode object similarity constraints. Our
experiments on hundreds of categories from the Labelme dataset show
that our regularized kernel classifiers can make significant improvement
on object categorization. We also evaluate the improved object detector
on the PASCAL VOC 2007 benchmark dataset.

Index Terms—Comparative Object Similarity, Object Categorization,
Object Detection, Kernel Machines, SVM, deformable part model, PAS-
CAL VOC, sharing.

1 INTRODUCTION

People can often learn names of new objects from few
visual examples. In part, we are able to quickly learn
about new object categories because we can relate them
to known similar objects. For example, few people know
what a “serval” is, but when told it is like a leopard, but
with longer legs and lighter body, most can identify one
in a picture. “A serval is like a leopard” is a similarity
statement defining a new category in terms of existing
categories.

In this paper, we exploit such category based similarity
statements to learn object models with few or even
no training examples. This is an interesting problem,
because in the real world, most object categories have
very few examples. In Figure 1, we show the number of
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Fig. 1. Most categories in a dataset we use for categorization (which
is a part of Labelme [30]) have few or no examples. The top image
shows “object clouds”. Objects with bigger names have more instances.
Most objects have small names because they have few examples. The
bottom image shows number of instances for the top 200 objects. The
top 5 categories are: window, tree, wall, building and car. The number of
instances decays very quickly.

instances of the 200 most frequent object categories in a
part of the Labelme dataset [30], ranked in decreasing
order. We can see the distribution is heavily long-tailed.
For most categories, we cannot find enough data to train
reliable classifiers. We have to transfer information from
object categories with many instances to categories with
few instances. To transfer information, we must first
know what categories should be used for transferring.
Similarity is a very good cue for this purpose, as used
by human beings.

To computationally exploit object similarity, when
learning a model of a new category (e.g., “serval”), we
first obtain a short list of similar categories from a human
labeler; this would contain “leopard”. We could just use



these “leopard” images as positive examples to train the
model. But this strategy is not attractive, because the two
categories are not the same. Worse, for many categories
there may be nothing that is strongly similar: our labeler
marks “lamp” and “flower” as similar to “ceiling fan”.
These categories are similar enough to be helpful, but
so different that we cannot mix them together. Due to
the uncertain degree of closeness between a target object
class and its similar categories, we think that labeled
similar categories are just more similar to the target
object than to other categories. For simplicity, we call
these less similar categories as “dissimilar categories”
from now on. Our method uses similarity constraints as
a form of regularization during learning. We require that
the learned object model should respond more strongly
to examples of similar categories than to examples of
dissimilar categories. For example, to learn a model
of “serval”, we obtain a few similar categories (e.g.
“leopard”) and some dissimilar categories (e.g. “grass”
and “bird”). Then we require the model to respond
more strongly to “leopard” examples than to “grass”
and “bird” examples. This process acts as a category
dependent similarity regularizer.

We first apply this mechanism in a kernel machine
framework [18]. We force kernel machine classifiers to
give higher responses to examples from similar cate-
gories than to examples from dissimilar categories. This
procedure usually involves tens of thousands of “similar-
dissimilar” examples. With a histogram intersection k-
ernel, we can efficiently learn kernel machines using a
variant of our previously developed algorithm SIKMA
[40]. We evaluate our method on hundreds of object
categories, many of which even have no training exam-
ples at all. We show that doing so leads to significant
performance improvements on hard categorization tasks.

Object detection is another important research topic
[36], [5], [10], which aims to localize object instances
using bounding boxes in clutter images. Training an ob-
ject detection system requires a large number of positive
instances, due to the high complexity object models. To
enable detection with few training examples, we adapt
the state of the art object detection system [10] to encode
object similarity constraints. Similarly, we force an object
detector to respond more strongly to an instance from a
similar category than to an instance from a dissimilar
category. This procedure helps when training examples
are rare. We evaluate our approach on a benchmark
dataset (PASCAL VOC 2007 dataset [7]), which is widely
recognized as a challenging dataset for object detection.
Our approach consistently outperforms [10] when there
are 20 training examples. When there are 50 positive
instances, we still see improvement on some categories.

This paper is a longer version of a published confer-
ence paper [38], which only applies comparative object
similarity to train kernel classifiers for the object catego-
rization task. In this paper, we also adapt a state-of-the-
art object detector to detect object instances with few
training examples using the same mechanism (Section

3.2).

2 RELATED WORK

Compared to numerous papers on recogniz-
ing/detecting objects using many training examples
[39], [22], [10], [6], [11], [40Q], categorization/detection
with few or no training examples receives much less
attention. A pioneering work by Miller et al. [25] learns
a new object category with one training example by
effectively bringing test data into correspondence with
the model defined by other categories. Fei-Fei et al.
[9] exploit the tendency of object models to be similar
to one another with a strong prior. Bart and Ullman
[3] learn a novel class from a single training example
by using the experience with already learned classes.
Our work differs from these papers by using object
similarity to link different object categories together to
allow effective knowledge transfer.

Recently, several papers [8], [20] propose to use at-
tributes as intermediate representation to share informa-
tion across object categories. Attributes refer to prop-
erties of objects such as “furry”, “has legs”, etc. We
can learn attribute classifiers from common objects and
apply them to recognize novel objects which don’t have
many training examples. Attributes can also be used to
describe novel objects even they are not successfully rec-
ognized. Kumar et al. [19] use learned attribute classifiers
for face verification. The attributes here more specifically
refer to visual properties associated with faces such as
“nose size”, “nose shape”, “hair style”, etc. Wang et
al. [37] jointly learns attribute and object detectors, and
enable recognizing “attribute object” pairs without any
training examples. Palatucci et al. [27] apply an interest-
ing idea in neural activity decoding, where the goal is to
determine the word or object a person is thinking about
by observing an image of that persons neural activity. In
this application scenario, it is intractable to collect neural
training images for every possible word in English, so
they define the notion of a semantic output code classi-
fier (SOC) which utilizes a knowledge base of semantic
properties of all the categories. Attributes are parallel to
similarity and are both intermediate representations that
can tie different categories up. The two can be further
integrated to better represent novel objects with existing
object categories. More discussions can be found in the
“conclusions and discussions” section.

We use visual object similarity as extra supervision to
link up different object categories to share features. In
[34], [26], [15], there is no human supervision on which
categories should be associated. Salakhutdinov et al. [31]
leverages Wordnet to define a fixed tree hierarchy to
share information at different levels and also tries to
learn the sharing structure automatically.

Similarity information is popularly used to learn dis-
tance metrics. Here one measures similarity with some
distance in a feature space, and adjusts feature weights to
make objects more similar to those in the same category



and dissimilar to those in different categories [12], [42],
[41]; analogous procedures can be applied to measures of
similarity that are not metric [16]. These methods cannot
use explicit inter-category information; they just ask
examples from the same category to be similar to each
other. In the absence of category labels, data-dependent
measures of smoothness can be used to weight fea-
tures [11]. In each case, the result is a global similarity
procedure — the metric is adjusted to be consistent with
all available similarity information.

An alternative global similarity procedure uses multi-
dimensional scaling (MDS) to obtain an embedding that
is consistent with all similarity data. There is compelling
evidence that this is a poor model of human similar-
ity judgements [35] (e.g., human judgements are not
symmetric). Similarity judgements may not be consistent
with one another or with new information (e.g. “a car is
like a van”; “a van is like a bus”; “a bus is like a train” do
not mean that a “car is like a train”). MDS resolves this
by seeking the best global embedding that is consistent
with all statements. The method is also impractical for
many categories, because we do not expect to have much
detailed pairwise similarity information. Different from
these methods, our approach can exploit local similarity
statements.

Our work is also relevant to “learning to rank” [17],
[43], [23], [14], [13], which is mainly developed by
the information retrieval community. The goal is to
automatically construct a ranking model from training
data, which usually consists of lists of items with some
partial order specified between items in each list. Rather
than rank individual documents, in this paper, we rank
different object categories according to object similarity
for knowledge transfer. In some sense, our learnt object
models can be considered as ranking models.

3 LEARNING OBJECT MODELS WITH COMPAR-
ATIVE SIMILARITY

We aim to learn models to recognize/detect named
objects. We have few or no positive training examples
for target objects, but many negative examples. Some
negative categories are identified by human labelers as
“similar” or “dissimilar”. Examples of similarity an-
notation are shown in Table 1. Kernel machines and
discriminatively trained part based object models [10]
are popularly employed to recognize and detect object
instances in images respectively. We adapt these two
methods to encode comparative object similarity con-
straints to learn from few examples.

3.1 Incorporating comparative object similarity to
train kernel machines for categorization

In this section, we learn an object model F' for each name
for categorization. A kernel machine classifier is used
following [44], [22]. Write the kernel machine classifier
F as Zf’zlaiK(xi,o), where K (z;,e) is a kernel basis

function (we use a histogram intersection kernel as in
[22], but some other kernels such as the RBF kernel can
also be applicable), x; is the ith support vector and «;
is the weight. In the training procedure, we learn F
from T training examples in feature representation along
with ground truth class labels {(z:,y:),t = 1,...., T,y €
{+1,-1}}.

The usual procedure without incorporating object sim-
ilarity information is to learn F' by minimizing:

1 < A
T;L(F(xt),yt)—i-EHFHQ 1)

where L is the hinge loss L(F(z¢),y:) = max(0,1 —
v F(z1)); 3||F|/* is a regularization term. Following [18],
all possible hypotheses of F' are assumed to form a Re-
producing Kernel Hilbert space, where ||F||? =< F, F >.
Accurate learning of F' in this way requires numerous
positive examples. When only few positive training ex-
amples are present, learned classifiers may not be robust.

Then how can we achieve a robust object model with
limited positive training examples, but given similar
and dissimilar examples? We argue that a good object
model would respond strongly to whatever positive
examples there happen to be, but would also respond
more strongly to similar examples than to dissimilar
examples. This lends the problem an ordinal charac-
ter — our method should rank similar examples more
highly than dissimilar examples, rather like an ordinal
SVM [13]. Ordinal SVM attempts to learn a function
h(x) such that h(x;) > h(x;) for any pair of examples
where rank(x;) > rank(x;). However, we do not have
a full ranking of all examples, instead, we only want to
rank categories. So we cannot use a conventional ordinal
SVM.

Our model F should: be positive for positive instances;
be negative for negative instances; and be larger for
similar instances than for dissimilar instances. The first
two requirements are straightforward to express with
the hinge loss. For the third, if g7 is an instance from
a similar category and g¢¢ is an instance from a dis-
similar category, F(g:) should always be larger than
F(g4), with some margin. We impose this constraint by
preparing a set of N similar-dissimilar pairs, and scoring
L(F(g3)—F(g%),1), where L is the hinge loss, but some
other loss functions can also be applicable. This acts as
a regularization term.

There could be very many pairs. If there are many
positive examples, then the similarity constraint is less
significant, but if there are few, it is an important con-
straint. This means the weight placed on this similarity
term should depend on the number of positive examples
T,. We choose F' to minimize

T N
S L(FG), ) +alTy) 5 - L(F(gh) ~ Flgi, 1)

n=1
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object similar categories dissimilar categories similarity type
shrub flower, grass, hedge bowl, vase, bottle, umbrella synonymous
number text tv, sink, box, bush synonymous
body torso grass, road, motorbike, hedge | nearly synonymous
picture frame painting towl, bed, floor, sofa, bush nearly synonymous
plant pot bowl rug, sign, sand, door different
bird house box, book flower, sofa, floor, motorbike different
gloves curtain, flag grass, desk, door, bottle very different
fireplace fence, railing step, path, bicycle, snow very different

TABLE 1
Examples of similarity annotation. For each target category, we identify its “similar” and “dissimilar” categories. We also label the similarity type by
a second volunteer.

Weight parameter
(=}
N
&

0.15

0 20 40 60 80 100

Number of positive training examples

Fig. 2. Weights of similarity term for different number of positive
training examples. When there are more positive examples, similarity
term contributes less; otherwise, it contributes more.

The first term is the empirical loss of the target category,
the second term imposes similarity constraints (it is also
considered to be a regularization term), and the third is
the conventional regularizer. o(7},) denotes the weight
on similarity as a function of the number of positive
training examples. Generally, if there are few positive
examples, a(7T,) should be large, and if there are many,
it should be small. Hence we set «(T,,) as the output of
a function with the input 7},

A

) = 1 rm o)

@)

Discussion on weight parameter setting for the
similarity term. Commonly, weights for multiple cues
are set using cross-validation. But we have few positive
examples and many categories, making cross-validation
ineffective and computationally expensive. Instead, we
assume that the parameters should depend primarily on
the number of training examples and set parameters that
work well for a variety of categories. In our implementa-
tion, A, B, and C are chosen through validation on five
categories which have enough training examples. Then
they are fixed and applied to all the other categories with
few training examples. The final parameters we use are:
A=0.5,B=0.1,and C = 25. Figure 2 shows how «(T},)
changes with different number of training examples T;,.

3.1.1 Training

Learning F' from Eq 2 involves a large number of similar-
dissimilar example pairs. Training can be very slow
using traditional batch based algorithms [29]. Stochastic
gradient descent is an efficient method to learn from
large-scale datasets [32], [18], [40], [21]. Different from
the traditional gradient descent algorithm, at each itera-
tion, this method only uses a subset of data points to
approximately calculate the gradient and take a step.
Extensive empirical results such as those in [32], [18],
[40], [21] show that it can achieve very close performance
and meanwhile be much faster, compared to batch based
algorithms.

In our implementation, at each iteration, we only
choose one single data point (here, a similar-dissimilar
example pair is considered as a data point) to calculate
the gradient. The algorithm is:

At the ith iteration, select a single data point at
random:

1) If a labelled example x; is selected, then follow the
procedure of [40], the new objective function is:

FL(F (), u) + S @

The sub-gradient is:

1
)\Fi—l - _JiK(fL’ta.) (5)
T
Where o; = § L 4eFia(e) <1
0 otherwise
Then F' is updated as:

1
Fi = (]. — )\772)sz1 —+

fﬂidiytK(xta °) (6)

2) If a similar-dissimilar pair {g:, g2} is selected, the
new objective function O for this pair is

SaTL(FL) ~ Fgh )+ 51 )

the sub-gradient 2—‘3|F=F,;_1 is:

(Lo (K (g 0) ~ (g 0) + AF (®)



1if () —
0 otherwise
and the update becomes

. d
where o; = Fiealgn) <1

We use a histogram intersection kernel for K, allowing
us to use the fast training algorithm of [40] without
sacrificing accuracy.

1
A"%) i—1 T Na77101(K(g7817.)

3.2 Incorporating comparative object similarity to
train part based object models for detection

The above section introduces a method on adapting ker-
nel machines for object categorization. Object detection,
which aims to predict bounding boxes of object instance
in cluttered images, also usually requires a lot of training
data. This section presents an approach to incorporate
object similarity information to train part based object
detectors.

We adapt the state of the art detection system [10]
to encode object similarity constraints. The approach is
sketched here for reader’s convenience.

In Felzenszwalb et al.’s procedure [10], an object cat-
egory is modeled as a star-structured part-based model
with model parameters 5. A test instance x; is scored

by:

fo(@e) = MaXeez(a,) B - (2e, 2) (10)

where Z denotes all the possible object configura-
tions, z specifies a configuration, ®(z,z) denotes the
concatenation of HOG features [5] extracted from image
subwindows defined by z and part deformation features.

This latent structure model is trained by minimizing
the following objective function:

T
=3 (sl ) + A58 (1)
i=1

where y; is the class label for the ith training example,
and L is the hinge loss. This formulation is different
from a standard support vector machine because it has
a latent structure. A latent SVM leads to a non-convex
optimization problem that becomes convex once the
latent structure is specified for positive examples. In
[10], a “coordinate descent” approach is adopted to learn
model parameters. At each round, it first chooses the
best latent structure in each positive image that responds
most strongly to the current model, and then solve a
convex optimization problem using the specified latent
structures.

Learning object models using Eq 11 usually requires
many training instances because of the sophisticated
model structure and also because of a large number of
model parameters. Many object categories only have few
training examples available. To encode similarity con-
straints, likewise, we require an object model to respond
more strongly to examples from similar categories than
to examples from dissimilar categories.

Suppose we also have examples from similar and
dissimilar categories except the positive and negative
training examples. Write {g2, g?} for a pair of examples,
where g is from a similar category while g2 is from
a dissimilar category. Then fg(g:) should be larger than
f5(g), with a margin. We obtain the following optimiza-
tion function:

1 <& N
7 2 Llfa(ae) ) Z (F5(g3) — fo(gl), 1)
i=1 el

1
+A51817 (12)

where the second term penalizes the failure of the
model to respond more strongly to similar examples than
to dissimilar examples; again, we use the hinge loss for
this term. We set « as the same as in Eq 3. When the
number of positive examples is large, « is small; when
the number of positive examples is small, « is large.

3.2.1 Training

An attractive feature of this method is that incorporating
it into the existing code of the Felzenswzalb et al. detector
is straightforward. We modify their “coordinate descent”
procedure to optimize Eq 12, obtaining:

1) For each positive example, find the latent structure
which scores highest: z; = argmax__, m@(xt,z).
We also find the best latent structure 1£0r each g,
and g2 in the similarity constraints using the same
idea.

2) Fix the latent structure z, and optimize g by
solving a convex optimization problem. As in [10],
we adopt a stochastic gradient descent method,
so we can easily modify their code to train our
detector. The procedure described here is also very
similar to the one described in Section 3.1.1. After
step 1, we have:

To(xt) = BO(ws, 24(B)))
fs(gy) = B®(g;,, 2,(8)))
fa(gd) = Be(gs, z2(B)))

In the gradient descent procedure, the gradient of
Eqg 12 is calculated as:

N
_Zp ﬁamfayf +a_z ﬁ gn7gn +Aﬁ (13)
n=1

0ify fa(w) >1
Pz, y1) = { (xt,ii(ﬁ)))) otherwise
s dy _ 0 if fﬁ(gn) ﬁ(gﬁ)zl

15:90:90) =\ (g2 23(8))) + Bg?. 22(5))) ofw
In the stochastic gradient descent, the gradient Eq
13 is calculated using a subset of examples (can be
positive/negative, or similar/dissimilar pairs) and
a step is taken in the negative direction at each
iteration. We follow [10] to set parameters.

All other important implementation components of [10]

such as feature extraction, data-mining hard examples,



and post-processing can be used without any changes.
For each category, we train a mixture model with 2 mix-
ture components. We flip each positive training examples
as in [10], but similar-dissimilar pairs are not flipped.

4 EXPERIMENTS

We presented two methods to exploit object similarity for
object categorization and detection respectively. In this
section, we evaluate their performance on benchmark
datasets and compare them with two baseline approach-
es. Note that in each experiment, we evaluate on binary
categorization rather than multi-class classification.

4.1 Experiments for object categorization
4.1.1 Experimental settings

Dataset: We choose 2,831 images from the Labelme [30]
dataset as a test bed for our categorization experiments.
They are realistic street and indoor images and their
regions are fully annotated. We are doing categorization
rather than detection, so we use the ground truth poly-
gon annotation to crop objects out and perform exper-
iments on these clean object regions (for both training
and test). Experimental results on object detection are
presented in Section 4.2. We manually reword object
names by correcting misspelled words, removing non-
noun words (e.g., “a”), and passing to the most com-
mon nouns (e.g., replacing “pedestrian walking” with
“person”). This leaves 972 object categories in total.

As Figure 1 shows, the distribution of object cate-
gories in the dataset is heavily long-tailed (which is also
suspected to be true in the real world). Around 600
categories have less than 6 instances. Only 70 categories
have more than 100 instances. We randomly select 1,500
images as training data and the other 1,331 images as
test data.

We select 90 object categories, which have more than
60 instances, as prototype categories. Categories with
few examples are not considered as prototype categories.
We finally have 225 test categories, each of which has
at least one test instance. For each category, a human
volunteer identified up to five similar objects from pro-
totype categories without seeing any images from the
dataset. In this labeling procedure, the annotator is asked
to label visually similar and dissimilar objects. No extra
instructions are given on which aspect (e.g., shape or
texture) should be used to judge similarity.

Similarity annotation was checked by a second vol-
unteer, who broke the similarity judgements into four
cases: synonymous (e.g. category “beach rock” and pro-
totype “rock™); near synonymous (e.g. “worktop”; “bar
counter”); different (e.g. “bird”; “flag” — the labeler felt
both flap in the sky); and very different (e.g. “ceiling
fan”;“flower”). More examples on similarity annotation
are shown in Table 1.

When training one object model, all the other classes
are used as negative. In the test procedure, we classify

each test image region and output a classification score.
AUC values are calculated for each class. In this exper-
iment, we directly use the ground truth segmentations
of test images to extract object regions. There are 21,803
test regions in total.

4.1.2 Features and parameters

We densely extract patches from each object region, and
represent each patch as a SIFT descriptor [24]. We sample
a subset of descriptors to cluster, and form a visual
vocabulary with 800 visual words. We use histograms
of these visual words as feature representation. In the
training procedure, we use around 20,000 negative ex-
amples and 20,000 pairs of similar-dissimilar examples
to learn each object model. The learning rate 7; is set
to be i++00, and X is set to be 0.00005. It usually takes
50 ~ 120 seconds to train one object model, which is
very fast.

4.1.3 Baselines

We compare our algorithm with two baselines. Baseline
1 uses all available positive and negative examples in the
usual way. If there are no positive examples, it outputs
a random guess. We call this baseline “No similarity
information”, abbreviated as “No Similarity”. Baseline 2
directly uses instances from similar categories as positive
examples (weighted with a weight which is defined in
the similar form of Eq 3) to train object models. We call
this baseline “Similar categories as positive categories”,
abbreviated as “Similar=Pos”. For this baseline, the clas-
sifier is learned via the following objective function:

T N
=S LF ) w) +olTy) 5 S0 LF(), 1) + SIF? (14)
t=1 n=1
Where g7 denotes the feature representation of the nth
similar image. This baseline uses the same similarity
information, but its performance is not as good as our
comparative similarity approach, shown by the follow-
ing experimental studies.

4.1.4 Similarity improves AUC

If we present a method with one positive and one neg-
ative example, area under the receiver operating curve
(AUC) gives the probability that the positive example
will score higher than the negative. AUC is a good
measure of performance for a task like naming with few
examples. Instead of using the standard AUC, we adopt
a balanced AUC, where each test example is weighted by
+ (I is the total number of test instances from the same
category). This can better measure how well the learned
models are against all the other categories rather than
against some very common categories. Our similarity
method produces strong improvements in AUC for all
test categories, especially when there are no positive ex-
amples (Figure 3). AP is a less helpful measure, because
there are very few positive examples and approximately
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Fig. 3. Similarity information improves AUC, even when there are no
examples. On the left, AUC averaged over all the 225 test categories
for two baselines and for our method; on the right, comparison on the
110 test categories which have no positive examples, both with standard
error bars.
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Fig. 5. Number of categories for which AUC is greater than a

threshold. These categories have no positive training examples. The x-
axis denotes the AUC thresholds. The y-axis denotes the number of
categories whose AUC values exceed the thresholds. There are more
than 40 categories with AUC values higher than 0.9 using our method.
Our method consistently gets more categories than baseline 2 (Similar =
Pos) in the high AUC area. Note that some categories have AUC values
smaller than 0.5, because the AUC is unstable when there are only few
positive test examples.

20000 negative examples and therefore all scores are very
small and unstable.

We also show some qualitative results in Figure 4. Our
method gets better AUC values and ranks more sensible
regions on the top.

Our method can reach very high AUC scores on
many categories even if they have no training examples.
Figure 5 shows the number of categories (from the
110 categories with no training examples) whose AUC
values exceed a set of AUC thresholds. More than 40
categories have bigger AUC values than 0.9.

This effect is not purely due to synonymy in the
labels. We sort categories by the strongest similar proto-
type (strongest: synonymous to weakest: very different).
Overall, there are 53 categories with at least one synony-
mous similar prototype; 70 categories with at least one

Averaged AUC values for different similarity types
1 ; ‘ ; ;
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Fig. 6. Similarity improves average AUC score; the effect is not due
to synonymy. We show the average for all categories with at least one
synonymous similar prototype; all with at least one near synonymous
similar prototype and no stronger; all with at least one different similar
prototype and no stronger; and all which have only very different similar
prototype. Note there are across the board improvements, which are
strong compared to error bars.

Number of examples | Number of classes | Average improvement

0 144 0.26

1-5 47 0.155

6-10 31 0.072

11-20 47 0.061

21-30 11 0.024

31-40 4 -0.027

TABLE 2

Average AUC improvement of our approach over the Baseline 1 as a
function of the number of the training examples.

near synonymous similar prototype and no stronger; 90
categories with at least one different similar prototype
and no stronger; and 12 categories which have only
very different similar prototype. We show average AUC
scores for each type in Figure 6. We can see that even
if the similar prototypes are at best “different” or “very
different”, using similarity yields a better AUC.

We also show the Average AUC improvement of our
approach over the Baseline 1 as a function of the number
of the training examples in Table 2. We can observe
that comparative similarity can help most when there
are fewer positive training examples. When the number
of positive examples increases, using the comparative
similarity gains little.

The number of similar classes for our examples ranges
from one to three, with a very few categories having
more. We investigated the effect of the number of similar
classes on the improvement in AUC, but found no
effect. We believe that it is the quality of labeled similar
categories that matters rather than the number of similar
categories.
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Fig. 4. Classification results for two categories. For each category, the first row shows results using our method; the second row shows results
using baseline 2 (Similar = Pos); the third row shows results using baseline 1 (No Similarity), if there are positive training examples. At each row,
the first figure shows the ROC curve; the second image shows the top ranked positive test instance (for each of these two object classes, there
is only one positive test instance), the number above the image shows the rank (out of 21,803 test instances); the following five images show top
ranked test regions. Our method gets better AUC (rank) than baseline 2 and baseline 1. It also ranks more reasonable regions on the top.

Average matching accuracy on categories by number

4.1.5 Similarity improves correspondence of training instances

An improvement in AUC is very helpful in finding 0.7 ‘ ‘
correspondence between regions and weakly labeled 0.6 |
object names [1]. {“

We choose 197 images from the test set which have at 0.5 1
least three regions from any of our 225 test categories. 04 jf |
Their labels are weakly labeled, meaning that we don’t
know which label goes to which region. Our task is to 0.3 1
use the learned models to establish the correspondence.

We solve for correspondence with a maximum weight 0-2 1
bipartite matching (using the Hungarian algorithm [28]), 0.1 |
where weights are given by calibrated classification s-

cores. The matching results are region labels. We cal- 0 )
culate matching accuracy for each class. The values I No Similarity
are averaged for comparison to avoid effects of large
categories (see Table 3).

In Figure 8, we show the average accuracy values
on categories by the number of training instances. Our
method gets a large improvement on categories with
zero or few training instances.

[1,5) [5,10) [10, +Inf)

Similar = Pos Il Our method

Fig. 8. Average matching accuracy on categories by number of
training instances. On the categories with zero or few training examples,
using similarity helps a lot. Our method also gets better results than
baseline 2(Similar = Pos).

4.2 Experiments for detection

4.2.1 Experimental settings any). We adopt the PASCAL VOC 2007 comp3 challenge

We evaluate our proposed detection method (Section 3.2)
on an object detection task, which aims to predict bound-
ing boxes of object instances in images (if there are

protocol [7]: at test, we predict bounding boxes and their
confidence values, and draw a precision-recall curve
for each category. An AP (average precision) value is
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Fig. 7. Examples showing found correspondence between regions and weak class labels. On each image, regions are depicted by polygons in
different colors, the found corresponding class names are surrounded by squares in the same colors. Incorrect correspondence is indicated with
red object names. Each column shows comparison on the same image. For the first three images, using classification scores by our method find
better correspondence. This is mainly because many categories such as “artwork” and “ceiling fan” have few or no training examples, the baseline
classifiers cannot learn good models for them. Our method doesn’'t work well on the fourth image, because “mouse” and “keyboard” have strong
similarity correlation (their similar categories are both labeled as “book” and “box”). One mouse (keyboard) model trained with similarity may be

more likely to confuse keyboard (mouse).

No Similarity | Similar = Pos | Our method
0.440 0.486 0.535
TABLE 3

Average matching accuracy using classification scores by different
methods. The accuracy is averaged over categories. Using our method
can establish better correspondence.

calculated accordingly as the performance measurement.
Predicted bounding boxes are considered correct only
if they overlap more than 50% with the ground-truth
bounding boxes. For the weight of the similarity term,
we set A = 0.5, B = 0.1, and C = 25, the same as the

ones used for categorization.

We use the same feature implementation of [10] and
parameters such as the support vector machine cost
parameter.

Our approach should be best applied to train object
detectors of unfamiliar objects for which we cannot
find enough training examples. But currently, there are
no established benchmark datasets for this task. So we
evaluate our system on the PASCAL VOC 2007 dataset
[7], which is largely recognized as a challenging dataset
for object detection.

This dataset has twenty categories, each object cate-
gory usually has several hundreds of training instances
and several hundred of test instances. To test how our
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Fig. 9. Five top ranked regions using different approaches. 20 positive training examples are used for these experiments. For each category,
regions in magenta are the ones ranked by the method without using any similarity information; regions in green are by our approach. Approaches
using similarity rank more true positive regions on the top.

object similar categories dissimilar categories
bicycle motorbike person car horse cat chair
bus car train person chair horse cat pottedplant
car bus train person chair horse cat pottedplant
cat dog horse sheep person bottle car chair
chair diningtable person sofa dog bus bicycle
cow horse sheep person car pottedplant bird
diningtable chair person sofa dog bus bicycle
dog cat horse person car train chair sofa
horse cow sheep dog person car chair bottle bus
motorbike bicycle person car horse cat chair
sheep horse cow person car pottedplant chair bottle
train car bus person chair horse cat pottedplant
TABLE 4

Twelve object categories in PASCAL VOC 2007 dataset and their similar and dissimilar categories. Similarity constraints help learn object
detectors when positive training examples are few.



approaches can help when training examples are rare in
the training procedure, instead of using all the trainval
set, we only use a subset (e.g., 20 positive examples)
to train detectors. Note that all the negative images in
the train set are used. To get stable test performance
numbers, we use all the test data.

Similar to the method of evaluating categorization
performance, we compare our detection algorithm with
two baselines: no similarity information and similar
categories as positive categories. In the training subset
selection procedure, we randomly choose a certain num-
ber (e.g., 20) of positive training examples, and repeat for
five times to calculate the mean value for comparison.
When training object models using our approach, there
could be too many similarity pairs if we enumerate each
of them. Instead, at each time, we randomly sample 500
example pairs for each object pair. This usually results in
around 5,000 example pairs in total (depending on how
many similar-dissimilar object pairs are used.)

The PASCAL VOC 2007 dataset has twenty categories,
but for eight of which we cannot find similar categories
in the same dataset (e.g., “person” and “bottle”). One
solution is to get similar categories from other bigger
datasets such as Labelme [30]. In this paper, we simply
ignore these eight categories and only test on the remain-
ing twelve categories, which have enough categories to
evaluate our approaches’ performance. These twelve ob-
ject categories and their similarity annotation are listed
in Table 4.

4.2.2 Performance Comparison

We first compare our approach with the two baselines
on each of the twelve object categories listed in Table
4, using 20 positive training instances. It usually takes
around one day to train one object detector, because
of the thousands of similar-dissimilar example pairs.
In the test procedure, we choose a low threshold to
make sure enough bounding boxes (usually 100) are
kept for each test image. The results (in AP scores) are
compared for each category in Table 5 when 20 positive
training examples are used. Using similarity consistently
improves AP scores. And our approach works better
than directly appending similar categories to positive
categories.

We also compare our approach with the baselines
using 30 and 50 positive training examples in Table 6.
According to the sigmoid function, weights of the sim-
ilarity term are set to be 0.23 and 0.04 respectively. We
also experiment with all the positive training examples.
Performance gets better with more positive training
examples. And similarity is more helpful when a small
number of positive training examples are available.

Discussion on when comparative similarity can be
helpful. Both Table 2 and Table 6 show that compar-
ative object similarity helps when the positive exam-
ples are few. However, when the number of positive
examples increases, comparative object similarity may
even decrease the performance. This can be interpreted
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motorbike

Fig. 10. Top false positive regions of “horse” and “motorbike”. For
each category, regions in magenta are ranked by the Baseline 1 (No
Similarity); regions in green are by our approach.

via the theory of bias-variance [4]: similarity constraints
make imperfect assumptions. They create additional con-
straints, which should reduce the variance of parameter
estimation, but they introduce bias. As the number of
genuine training examples increases, the benefit to re-
duced variance is decreased, while the bias remains. That
is why lower or no gain is observed with a sufficiently
large number of training examples. Comparative similar-
ity can only help when the benefit of reducing variance
exceeds the loss of introducing bias. The tipping point
depends on the distribution of data points in the feature
space and on the particular similarity constraints.

In Figure 9, we show top ranked regions on the right,
produced by Baseline 1 (No Similarity) and our ap-
proach. Using similarity ranks more true positive regions
on the top.

Figure 10 shows top ranked false positive regions
of “horse” and “motorbike”. Not surprisingly, detectors
trained using similarity constraints find regions from
similar categories as false positives. But note that lever-
aging information from similar and dissimilar categories
help a detector to be more discriminative from back-
ground regions (one can see baseline detectors find many
false positive regions on the background).

In Figure 11, we show true positive test regions whose
rank is improved most significantly by using similarity
compared to Baseline 1 (without similarity information).
When tested with the baseline detector, these regions
have low confidence values and are ranked low; when
using the detector trained with our approach, they re-
ceive much higher confidence scores and are highly
ranked in all the predicted bounding boxes. Using sim-
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No Similarity | Similar = Pos | Our Approach
bicycle 0.382+0.033 0.423+0.015 0.419+0.017
bus 0.069+0.013 0.11740.014 0.168+0.010
car 0.188+0.015 0.20140.008 0.21740.012
cat 0.00240.000 0.009+40.007 0.01440.002
chair 0.002+0.000 0.0244-0.005 0.03140.006
cow 0.015+0.005 0.041+0.006 0.054+0.004
diningtable 0.031+0.008 0.029+0.007 0.027+0.007
dog 0.010+0.007 0.016+0.008 0.013+0.004
horse 0.112+0.018 0.12240.009 0.163+0.012
motorbike 0.22340.020 0.21740.017 0.247+0.015
sheep 0.094+0.018 0.103+0.021 0.136+0.015
train 0.121+0.023 0.11540.018 0.120+0.014
MEAN 0.104 0.119 0.134
TABLE 5

AP values of different approaches on twelve PASCAL VOC 2007 object categories. We used 20 positive training examples for each category. Our
approach outperform the two baselines on most object categories.

Fig. 11. True positive test regions whose rank is most significantly
improved using our approach. They have low confidence values when
tested using the baseline 1 (No Similarity) detector, but high confidence
values when tested using the detector trained by our approach.

ilarity constraints helps because more relevant informa-
tion is used. For example, some bus regions look like
trains. They are ranked higher using our approach when
the train is used as a similar object category to train the
bus detector.

5 CONCLUSIONS AND DISCUSSIONS

In this paper, we present a method of using comparative
object similarity to help learn object models with few or
even no positive training examples. We adapt state-of-
the-art categorization and detection systems to incorpo-
rate object similarity constraints. But note that the model
is wholly general and can be applied to a wide variety of
problems. For object categorization, experimental results
show that our method leads to significant improvements

on recognizing hundreds of categories with few or no
training examples. For object detection, our proposed
approach shows improvement on a benchmark detection
dataset PASCAL VOC 2007 when using a small number
of positive training examples (typically, 20).

Some future work can be done to better exploit object
similarity for visual categorization. Currently, all the
similarity constraints are equally considered. However,
some constraints should contain more valuable informa-
tion. For example, “a cat is like a dog” is more useful
than “a cat is like a sheep”. We will consider assigning
bigger weights to example pairs from similarity con-
straints with higher quality.

Another possible extension is to integrate similarity
and attributes [8], [20], [37] for more powerful knowl-
edge transfer. In some sense, objects are considered
similar because they share common visual attributes.
For example, a cat and a dog are similar because they
both have “legs” and “tail”, and are both “furry”. If we
know what attributes make two object categories similar,
then we can build a machinery to only transfer visual
knowledge corresponding to these specified attributes.
This will reduce noise in the knowledge transfer proce-
dure and lead to more effective sharing. An interesting
property of attributes is that they can be used to describe
a novel object class. For example, “A serval is furry and
has legs.” However, there are many different types of
legs, such as cats’ legs, leopards’ legs, and even tables’
legs. These legs can be quite different. Only saying
“has legs” is not accurate enough to describe, and there
is no taxonomy available to define different legs in
a fine-grained manner. When similarity information is
appended, we can say a serval has legs, which are similar
to leopards’ legs. In this way, similarity can heavily
enhance the descriptive power of attributes.

When using similarity, the learned object models
might confuse the target categories with similar cat-
egories, since information from similar categories is
shared. As shown in Figure 10, when detecting mo-
torbikes, many bicycle instances are ranked top. One
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No Similarity (mean AP values) | Similar = Pos | Our Approach
20 positive examples 0.104 0.119 0.134
30 positive examples 0.162 0.168 0.175
50 positive examples 0.187 0.183 0.183
All positive examples 0.278 0.267 0.270
TABLE 6

Performance comparison of Baseline 1, Baseline 2, and our approach with 20, 30, 50, and all the positive training examples respectively. The
performance is shown in mean AP values of the twelve PASCAL object categories.

solution is to specify shared attributes as introduced
above, then we can use other attributes to disambiguate.
Another potential solution is to partition categories using
taxonomy [2], [33], or using scenes: are the objects found
in kitchen or in park? For each object class, we only need
to train a model that is against categories from the same
partition. Then we can choose similar categories from
other partitions to avoid the confusion.
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