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Abstract—We propose a category-independent method to produce a bag of regions and rank them, such that top-ranked regions
are likely to be good segmentations of different objects. Our key objectives are completeness and diversity: every object should have
at least one good proposed region, and a diverse set should be top-ranked. Our approach is to generate a set of segmentations by
performing graph cuts based on a seed region and a learned affinity function. Then, the regions are ranked using structured learning
based on various cues. Our experiments on BSDS and Pascal VOC 2011 demonstrate our ability to find most objects within a small

bag of proposed regions.
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1 INTRODUCTION

UMANS have an amazing ability to localize objects

without recognizing them. This ability is crucial
because it enables us to quickly and accurately identify
objects and to learn more about those we cannot recog-
nize.

In this paper, we propose an approach to give com-
puters this same ability for category-independent local-
ization. Our goal is to automatically generate a small
number of regions in an image, such that each object is
well-represented by at least one region. If we succeed,
object recognition algorithms would be able to focus
on plausible regions in training and improve robustness
to highly textured background regions. The recognition
systems may also benefit from improved spatial support,
possibly leading to more suitable coordinate frames than
a simple bounding box. Methods are emerging that
can provide descriptions for unknown objects [1], [2],
but they rely on being provided the object’s location.
The ability to localize unknown objects in an image
would be the first step toward having a vision system
automatically discover new objects.

Clearly, the problem of category-independent object
localization is extremely challenging. Objects are some-
times composed of heterogeneous colors and textures;
they vary widely in shape and may be heavily oc-
cluded. Yet, we have some cause for hope. Studies of
the human visual system suggest that a functioning
object localization system can exist in the absence of a
functioning object identification system. Humans with
damage to temporal cortex frequently exhibit a profound
inability to name objects presented to them, and yet
perform similar to healthy controls in tasks that require
them to spatially manipulate objects [3]. Many objects
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are roughly homogeneous in appearance, and recent
work [4] demonstrates that estimated geometry and
edges can often be used to recover occlusion boundaries
for free-standing objects. While we cannot expect to
localize every object, perhaps we can at least produce
a small bag of proposed regions that include most of
them.

Our strategy is to guide each step of the localization
process with estimated boundaries, geometry, color, and
texture. First, we create seed regions based on the hi-
erarchical occlusion boundaries segmentation [4]. Then,
using these seeds and varying parameters, we generate
a diverse set of regions that are guided toward object
segmentations by learned affinity functions. Finally, we
take a structured learning approach to rank the regions
so that the top-ranked regions are likely to correspond to
different objects. We train our method on segmented ob-
jects from the Berkeley Segmentation Dataset (BSDS) [5],
and test it on BSDS and the Pascal 2011 segmentation
dataset [6], [7]. Our experiments demonstrate our sys-
tem’s ability for category-independent localization in a
way that generalizes across datasets. We also evaluate
the usefulness of various features for generating pro-
posals and the effectiveness of our structured learning
method for ranking.

2 RELATED WORK

Category-Dependent Models: By far, the most common
approach to object localization is to evaluate a large
number of windows (e.g., [8], [9]), which are found
by searching naively over position and scale or by
voting from learned codewords [10], [11], distinctive
keypoints [12], [13], or regions [14]. These methods
tend to work well for objects that can be well-defined
according to a bounding box coordinate frame when
sufficient examples are present. However, this approach
has some important drawbacks. First, it is applicable



only to trained categories, so it does not allow the
computer to ask “What is this?” Second, each new
detector must relearn to exclude a wide variety of
textured background patches and, in evaluation, must
repeatedly search through them. Third, these methods
are less suited to highly deformable objects because
efficient search requires a compact parameterization of
the object. Finally, the proposed bounding boxes do not
provide information about occlusion or which pixels
belong to the object. These limitations of the category-
based, window-based approach supply some of the mo-
tivation for our own work. We aim to find likely object
candidates, independent of their category, which can
then be used by many category models for recognition.
Our proposed segmented regions provide more detail to
any subsequent recognition process and are applicable
for objects with arbitrary shapes.

Segmentation and Bags of Regions: Segmentation has
long been proposed as a pre-process to image analy-
sis. Current algorithms to provide a single bottom-up
segmentation (e.g., [15], [16]) are not yet reliable. For
this reason, many have proposed creating hierarchical
segmentations (e.g., [17], [4], [18]) or multiple overlap-
ping segmentations (e.g., [19], [20], [21], [22]). Even these
tend not to reliably produce good object regions, so
Malisiewicz et al. [20] propose to merge pairs and triplets
of adjacent regions, at the cost of producing hundreds
of thousands of regions. In our case, the goal is to
segment only objects, such as cars, people, mugs, and
animals, which may be easier than producing perceptu-
ally coherent or semantically valid partitionings of the
entire image. This focus enables a learning approach,
in which we guide segmentation and proposal ranking
with trained classifiers.

An alternative approach is to attempt to segment
pixels of foreground objects [23] or salient regions [24],
[25]. However, these approaches may not be suitable for
localizing individual objects in cluttered scenes, because
a continuous foreground or salient region may contain
many objects.

Two concurrent works have also considered gener-
ating object proposals as a preprocess for subsequent
stages of object recognition. First, Alexe et al. [26] con-
sider an “objectness” measure over bounding boxes,
which they use to bias a sampling procedure for poten-
tial object bounding boxes. This method aims to be fast,
on the order of several seconds per image, which restricts
them to a less expressive bounding-box based repre-
sentation. Alternatively, Carreira and Sminchisescu [27]
consider a similar region proposal and ranking pipeline
to ours. Regions are proposed by sampling points from a
grid on the image which are used to seed the foreground
color model of a segmentation. The border of the image
is used to seed the background, and a per-pixel segmen-
tation is generated with a graph-cut over simple color
cues. The resulting regions are ranked through classi-
fication based on gestalt cues with a simple diversity
model. Our approach instead guides segmentation with

a learned affinity function, rather than setting the image
border to background. We also differ in our structured
learning approach to diverse ranking.

To summarize our contributions: 1) we incorporate
boundary and shape cues, in addition to low-level cues
to generate diverse category-independent object region
proposals, and 2) introduce a trained ranking procedure
that produces a small diverse set of proposals that aim
to cover all objects in an image. We thoroughly evaluate
each stage of the process, and demonstrate that it can
generalize well across datasets for a variety of object
categories.

3 OVERVIEW OF APPROACH

Since our goal is to propose candidates for any object
in an image, each stage of our process must encourage
diversity among the proposals, while minimizing the
number of candidates to consider. Our procedure is sum-
marized in Figure 1. To generate proposals for objects of
arbitrary shape and size, we adopt a segmentation based
proposal mechanism that is encouraged to only propose
regions from objects.

Rather than considering only local color, texture, and
boundary cues, we include long range interactions be-
tween regions of an image. We do this by considering
the affinity for pairs of regions to lie on the same object.
This set of regions is chosen from a hierarchical segmen-
tation computed over occlusion boundaries. To generate
a proposal, we choose one of these regions to seed the
segmentation, and compute the probability that each
other region belongs to the same object as this seed. The
affinities are then transferred to a graph over superpixels
from which we compute segmentations with a variety of
parameters. By computing the affinities over regions first
and then transferring them to superpixels, we get the
benefit of more reliable predictions from larger regions
while maintaining the flexibility of a superpixel based
segmentation. After repeating this process for all seed
regions, we obtain an initial bag of proposals.

In our effort to discover a diverse set of objects,
our proposal mechanism may generate many redun-
dant or unlikely object candidates. In both cases, we
would like to suppress undesirable proposals, allowing
us to consider better candidates first. This motivates
a ranking procedure that provides an ordering for a
bag of proposals which simultaneously suppresses both
redundant and unlikely candidates. We can then uncover
a diverse set of the good object proposals with far fewer
candidates.

Our ranker incrementally adds proposals, from best to
worst, based on the combination of an object appearance
score and a penalty for overlapping with previously
added proposals. By taking into account the overlap
with higher ranked proposals, our ranker ensures that re-
dundant regions are suppressed, forcing the top ranked
regions to be diverse. This is especially important in
images with one dominant object and several “auxiliary”
objects.



f c>

Hierarchical Segmentation

Input Image

Fig. 1.

Proposed Regions Ranked Regions

Our pipeline: compute a hierarchical segmentation, generate proposals, and rank proposed regions. At each

stage, we train classifiers to focus on likely object regions and encourage diversity among the proposals, enabling the
system to localize many types of objects. See section 3 for a more detailed overview.

4 PROPOSING REGIONS

We first generate a large and diverse bag of proposals
that are directed to be more likely to be object regions.
Each proposal is generated from a binary segmentation,
which is seeded with a subregion of the image. This seed
is assumed to be foreground, and a segmenter selects
pixels likely to belong to the same foreground object as
the seed.

4.1

We use regions and superpixels from a hierarchical
segmentation as the building blocks for our proposal
mechanism. To generate the hierarchical segmentation,
we use the output of the occlusion boundary algorithm
from Hoiem et al. [4]. The occlusion boundary algorithm
outputs four successively coarser segmentations, with
probabilities for occlusion and figure/ground for each
boundary in the segmentation. From each segmentation,
we compute a probability of boundary pixel map and a
figure/ground probability pixel map, and then average
over the segmentations. Then, we create our hierarchical
segmentation with agglomerative grouping based on
boundary strength, as in [17], and we use the boundary
strength and figure/ground likelihoods as features.

Hierarchical Segmentation

4.2 Seeding

A seed serves as the starting point for an object proposal.
The appearance and boundaries around the seed are
used to identify other regions that might belong to the
same object. Seeds are chosen from the hierarchical seg-
mentation such that they are large enough to compute
reliable color and texture distributions (> 20 % 20 pixels).
This results in about 300 seed regions per image. Also,
we remove regions with boundaries weaker than 0.005
, since these are likely to just be a portion of a larger
region. Stronger boundaries also facilitate the use of
boundary cues to determine the layout of the object with
respect to the regions.

4.3 Generating Segmentations

To generate a proposal, we infer a foreground / back-
ground labeling 1,I; € {0,1} over superpixels. Given
a seed region, defined by a set of superpixels S, we

construct a CRF that takes into account each superpixel’s
affinity for the seed region and the probability of bound-
aries between adjacent superpixels:
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Here, f(l;;S,X,~) is the superpixel affinity term, in-
ferred from image features X, and g(l;,1;; X) is the edge
cost between adjacent superpixels (defined by set of
neighbors N). This CRF is parametrized by the fore-
ground bias v and the affinity/edge trade-off 5. By
varying these parameters for each seed, we can produce
a more diverse set of proposals. We choose seven v
values uniformly from [—2, 1], and eight 8 values spaced
logarithmically from [0, 10]. These ranges were selected
on the training set to give the best tradeoff between max-
imizing recall and minimizing the number of proposals
generated.

4.3.1

To compute the superpixel affinity f(l;;S,Z,~), we first
compute the affinity between the seed S and each region
R in the hierarchical segmentation, and then transfer
these region predictions to individual superpixels. For
examples of superpixel affinities for different seeds, see
Figure 3. We learn the probability that region R and
seed S lie on the same object (P(Ir|S,Z)) with a boosted
decision tree classifier. Positive training examples are
generated from pairs of regions that lie on the same
object. Negative examples use pairs with one region
lying on an object, and the other region lying on another
object or the background.

Features: The classifier uses features for cohesion,
boundary, and layout, as summarized in Table 1. Cohe-
sion is encoded by the histogram intersection distances
of color and texture (P1). Boundary cues are encoded by
considering the cost to pass across boundaries from one
region to the other. This path across boundaries is the
straight line between their centers of mass (P2).

We also introduce a new layout feature. Given occlu-
sion boundaries and figure/ground labels, we predict

Region Affinity



Precomputation

Occlusion Boundaries [4]

Geometric Context (non-planar vertical surface) [28]
Hierarchical Segmentation - gives set of regions H Section (4.1)
Probability of BG region classifier [28]

Train Classifiers

Homogeneous Region Classifier

— Predicts if a region is likely to be all foreground or all background.

— Binary boosted decision tree classifier trained over regions R, € H from hierarchy.

— Positive examples are either all foreground or all background, negatives cover both foreground
and background.

Region Affinity Classifer

— Predicts if two regions are likely to lie on the same object.

— Binary boosted decision tree classifier trained over pairs of regions from hierarchy.

- Positive examples are pairs of regions covering the same object, negatives are fore-
ground/background pairs or pairs from two different objects.

Layout Classifier

— Predicts if a region lies on the left, right, top, or bottom of an object.

- Binary logistic regression classifier trained over regions from hierarchy.

- HOG features extracted on 4x4 grid over left/right occlusion boundary maps.

Ranking Model

— Ranks a set of proposals P by likelihood of being an object.
— Optimize latent structured objective over proposed regions and appearance features from
training set. (Eq.10)

Region Proposal

Select seeds: S = {r € H | area(r) > 20 x 20 pixels A boundary strength(r) > 0.005}
For each image Z, seed S € Sz and parameters (v, ) € G x B:

— Compute superpixel affinity map: f(I;;5,Z,v) (Eq. 3)

- Propose region: p = arg min; P(1Z, S,~, 8) (Eq. 1)

Split regions with disconnected components and add to set

Remove redundant regions with > 90% overlap

Region Ranking

For each proposal p € P, compute appearance features x,
For each image I find (approximate) highest scoring ranking with greedy inference:
r; = argmax, S(x,r;w) (Eq. 5)

Fig. 2. System Overview

Fig. 3. Example superpixel affinity maps for three sample seeds, indicated by green shaded region. Lighter shading
indicates stronger affinity for belonging to the same object as the seed




TABLE 1
Features computed for pairs of regions for predicting the
likelihood that the pair belongs to the same object. These
features can capture non-local interactions between
regions, producing better segmentations.

Feature Description Length
P1. Color,Texture histogram intersection 2
P2. Sum,Max boundary strength between centers of mass 2
L1. Left+Right layout agreement 1
L2. Top+Bottom layout agreement 1
L3. Left+Right+Top+Bottom layout agreement 1

whether a particular region is on the left, right, top, bot-
tom, or center of the object. These predictions are made
by logistic regression classifiers based on histograms of
occlusion boundary orientations, weighted by the pre-
dicted probabilities. Separate histograms are computed
for figure and ground predictions. As a feature, we
measure whether the layout predictions for two regions
are consistent with them being on the same object. For
example, if one region predicts that it is on the left of
the object and a second region to the right of the first
predicts that it is on the right side of the object, those
regions are consistent. We construct a layout score for
horizontal, vertical, and overall agreement (L1-L3).

Computing Superpixel Scores: Since the CRF is de-
fined over superpixels, the region affinity probabilities
are transferred to each superpixel i by averaging over
the regions that contain it. The terms of this average
are weighted by the probability that each region R
is homogeneous (P(Hpg)), which is predicted from the
appearance features in Table 2:

> (rliery P(HRg) - P(lr = 115,7)
> triiery P(HR)
Note that we now have labels for superpixels (/;) and
for regions (Ir). We use P([;|S,Z) to compute the final
affinity term f(I;; 5,Z,7):
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The first two terms ensure that superpixels belonging
to the seed are labeled foreground.

P(l; = 1|S,T) = @

4.3.2 Edge Cost

The edge cost enforces a penalty for assigning different
labels to adjacent superpixels when their separating
boundary is weak. This boundary strength is computed
from the occlusion boundary estimates for each pair of
adjacent superpixels i, j: P(B; ;|1).
. o 0 : l,‘ = lj
g(li,lj,I) B { 71HP(B7J‘I) . lz 7é lj (4)

This edge cost produces a submodular CRF, so ex-
act inference can be computed quickly with a single
graph-cut [29] for each seed and parameter combination.

Proposals with disconnected components are split and
the new components are added to the set, and highly
overlapping (> 90%) proposals are pruned. Further non-
maximum suppression is handled in the ranking stage.

5 RANKING PROPOSALS

We now introduce a ranker that attempts to order pro-
posals, such that each object has a highly ranked pro-
posal. This ranker encourages diversity in the proposals
allowing us to achieve our goal of discovering all of
the objects in the image. Below, we detail our objec-
tive function, which encourages top-ranked regions to
correspond to different objects and more accurate object
segmentations to be ranked higher. Then, we explain the
image features that we use to rank the regions. Finally,
we describe the structured learning method for training
the ranker.

5.1 Formulation

By writing a scoring function S(x,r;w) over the set of
proposals x and their ranking r, we cast the ranking
problem as a joint inference problem, allowing us to take
advantage of structured learning. The goal is to find the
parameters w such that S(x,r;w) gives higher scores
to rankings that place proposals for all objects in high
ranks.

S(x,r;w) = Za(ri) . (waT\Il(xZ) - w?i’(m)) (5)
The score is a combination of appearance features ¥(z)
and overlap penalty terms ®(r), where r indicates the
rank of a proposal, ranging from 1 to the number of
proposals M. This allows us to jointly learn the appear-
ance model and the trade-off for overlapping regions.
®(r) is the concatenation of two vectors ®;(r), Po(r):
®,(r) penalizes regions with high overlap with previ-
ously ranked proposals, and ®,(r) further suppresses
proposals that overlap with multiple higher ranked re-
gions. The second penalty is necessary to continue to
enforce diversity after many proposals have at least one
overlapping proposal. Since the strength of the penalty
should depend on the amount of overlap (regions with
90% overlap should be suppressed more than regions
with 50%) we want to learn overlap specific weights. To
do this, we quantize the overlaps into bins of 10% and
map the values to a 10 dimensional vector q(ov) with 1
for the bin it falls into and 0 for all other bins.

®y(r;) =q ({jmi)ii} 0@(@3’)) (6)
Oy(ri) = Y alov(i,j)) (7)
{jlrj<r:}

The overlap score between two regions is computed
as the area of their intersection divided by their union,



TABLE 2
Features used to describe the appearance of a proposal
region. It is important that each of these features
generalize across all object categories, including ones
never seen during training.

Feature Description Length

B1. Mean,max probability that exterior occludes

B2. Mean,max probability of exterior being occluded

B3. Mean,max probability of exterior boundary

B4. Mean,max probability of interior boundary

S1. Min,mean,max,max-min background probability

52. Min,mean,max,max-min geometric context probabilities
S3. Color,texture background hist. intersection (local)

S4. Color,texture background hist. intersection (global)

NN ENNNRN

with A; indicating the set of pixels belonging to region
i
L AN Ay

ov(i,j) = m (8)

Each proposal’s score is weighted by a(r), a monotoni-
cally decreasing function. Because higher ranked propos-
als are given more weight, they are encouraged to have
higher scores. We found that the specific choice of a(r)
is not particularly important, as long as it falls to zero
for a moderate rank value. We use a(r) = exp ((';721)2),
with o = 100.

Computing max, S(x,r;w) cannot be solved exactly,
so we use a greedy approximation that incrementally
adds the proposal with the maximum marginal gain. We
found that this works well for a test problem where full
enumeration is feasible, especially when ouv(-, ) is sparse,
which is true for this ranking problem.

5.2 Region Representation

The appearance features ¥ (z) characterize general prop-
erties for typical object regions, as summarized in Ta-
ble 2. Since this is a category-independent ranker, we
cannot rely on finely tuned category-dependent shape
and appearance models. However, we can expect ob-
ject boundaries to respect occlusion boundaries, so we
encode the probability that the exterior is occluded by
(B1) or occluding another region (B2), and the overall
boundary strength (B3). We also encode the probability
of interior boundaries (B4), which we expect to be small.

Additionally, certain “stuff-like” regions can be
quickly identified as background, such as grass and
sidewalks, so we learn a pixel based probability of
background classifier on LabelMe [30], and characterize
the response within the region (S1). This is learned using
the region based classifiers from [28]. We also use the
confidence of the vertical, porous, solid, and sky geo-
metric classes using trained classifiers from [28], which
is noted to often correspond to object and background
classes (52).

Finally, we encode the differences between color and
texture distributions between the object and background.
We compute the difference in histograms between the

object and two regions: the local background region
surrounding the object (53) and the entire background
(54). The local background is defined by any superpixels
that are at most two superpixels away from the proposed
region.

5.3 Learning

To solve the structured learning problem, we use the
margin-rescaled formulation of latent max-margin struc-
tured learning [31]. Here the objective is find a linear
weighting w such that the highest scoring zero-loss rank-
ing for each image scores higher than every incorrect
ranking by a margin defined by the loss L. Below the
objective is written in unconstrained form:

L (n) . ) (n) 3
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Here, for image n, O™ defines the set of ground truth
regions for each image, P(™ is the set of valid labelings
(the set of permutations over regions), r defines the
highest scoring correct (zero-loss) ranking, and t is the
highest scoring incorrect ranking.

Loss: The loss £ requires that each object o in the set
of objects O should have high overlap with a highly
ranked proposal. The loss has penalties for several levels
of overlap 7, ranging from 50% to 100% in intervals of
5%. Since this loss is cumulative, i.e. a proposal with
100% overlap will contribute to the loss for every 7, it
encourages the highest quality region for each object to
have the highest rank:

R 1 .
L0 = (G 2 2 (g min i~ Ko. - (10)
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The constant K¢ is subtracted so that the lowest possible
loss for a given ground truth is zero.

To learn this latent structured model, we iterate be-
tween finding the highest scoring zero-loss ranking for
each image, and solving the structured learning prob-
lem with the fixed ground truth structure. To learn the
structured subproblem we use a cutting-plane based
optimization with alternates between finding the most
violate constraint and updating w with the new con-
straints, and repeat until the change in w is small.

Initialization: Since the structured learning problem
has latent variables (i.e. which zero loss ranking to
use), the resulting objective function is non-convex and
requires a strong initialization to perform well. To ini-
tialize, we first train a binary classifier over appearance
features ¥ using a sampling of good regions (> 65%
overlap) and bad regions (< 33% overlap). We then do a
coordinate descent search for the weight of each bin of
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Fig. 4. Sample object annotations for BSDS. Each solid
color corresponds to a distinct annotated object. All other
pixels are considered background.

the penalty term that minimizes the loss. We do a single
pass through the variables ordered in ascending bin size.

6 EXPERIMENTS AND RESULTS

We perform experiments on the Berkeley Segmentation
Dataset (BSDS) [5] and Pascal VOC 2011 [6]. All training
and parameter selection is performed on the BSDS train-
ing set, unless otherwise noted, and results are evaluated
on BSDS test and the Pascal validation set. Qualitative
proposal results from both Pascal and BSDS are sampled
in Figure 5.

Annotation: For both datasets, a ground truth seg-
mentation is provided for each object. For BSDS, we
label object regions by merging the original ground
truth segments so that they correspond to objects. Object
masks are non-overlapping subregions of the image that
correspond to “things” with a definite shape, while
“stuff”-type regions with indeterminate shape, such as
sky and grass, are excluded. Regions such as buildings
and trees are excluded since they are typically part of the
background scene rather than distinct elements within
it. There are an average of 2.6 annotated objects in
each BSDS image. See Figure 4 for sample annotations.
Note that since annotations are derived directly from the
boundaries of BSDS, small objects without boundaries
cannot be annotated, such as the cars in the street scene.

6.1 Baselines

We compare our method with two sets of baselines.
First, we compare to the bottom-up hierarchical segmen-

TABLE 3
Comparison of features for generating proposals: affinity
classification (AUC), recall @ 50% overlap, and best
segment score (BSS).

BSDS Pascal 2011
Feature AUC | Recall | BSS H AUC | Recall | BSS
Color, Texture (P1) 75.0 | 77.0 | 65.7 || 71.5 | 749 | 63.8
C,T + Boundary (P1,P2) | 79.8 | 80.2 | 66.3 || 78.0 | 75.7 | 64.5
C,T + Layout (P1,L1-L3) | 77.5 | 83.4 | 67.2 || 726 | 77.2 | 65.4
All (P1,P2,L1,L2,L.3) 80.2 | 79.7 | 66.2 772 | 76.2 | 64.9

tations generated in Section 4.1. Second, we compare
to the contemporary methods from [26] (Objectness)
and [27] (CPMC). Since the Objectness method uses a
bounding box representation, we repeat the comparison
experiments using bounding box overlap on the larger
VOC2011 Main val dataset.

6.2 Proposal Generation

To measure the quality of a set of proposals, we find the
best segmentation overlap score for each object (BSS).
From this, we can characterize the overall quality of
segments with the mean BSS over objects, or compute
the number of objects recalled with a BSS above some
threshold. For our experiments, we set the threshold
to 50% unless otherwise noted. A pixel-wise overlap
threshold of 50% is typically, but not always, more
stringent than a 50% bounding box overlap.

Features: The most commonly used features for seg-
mentation are color and texture similarity, so we use
this as a baseline. We then add the boundary crossing
and layout features individually to see their impact.
Finally, we combine all of the features to obtain our final
model. To measure the performance of each feature, we
consider the area under the ROC curve (AUC) for affinity
classification, the best segment score, and recall at 50%.
The results are shown in Table 3.

The first thing to note is that the addition of both
the boundary and layout features are helpful for both
datasets. In addition, we find that the affinity clas-
sification performance cannot fully predict a feature’s
impact on proposal performance. It is important to also
consider how well the features facilitate producing a
diverse set of proposals. Features that cause prediction
to be more dependent on the seed region will produce
a more diverse set of proposals. For the remainder
of the experiments we use the color+layout features,
since they create a more diverse set of proposals than
color+boundaries+layout. The boundary cues are still
captured with the pairwise term of the MRF.

Proposal Quality: We begin by considering similar
baselines to [20]. The first baseline is to use each region
from the hierarchical segmentation as an object proposal.
The second baseline is to merge all pairs of adjacent
regions, which achieves higher recall but with many
more proposals. We can also measure the upper bound
on performance by choosing the best set of superpixels
for each object region.
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Fig. 5. Results from the proposal and ranking stages on BSDS (first 3 rows) and Pascal 2011 (last 3 rows). The left
column shows the 3 highest ranked proposals, The remaining columns show the highest ranked proposals with at
least 50% overlap with each object for Our Proposals, CPMC, and Objectness. Note that we use region overlap for
ours and CPMC, and bounding box ovelap for Objectness. The number pairs displayed on each proposal correspond
to rank and overlap, respectively. As seen in row 3, CPMC tends to have more trouble finding small objects in cluttered
scenes. Objectness provides less detailed bounding boxes and generally requires more candidates to achieve the
same level of recall.
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Fig. 6. Recall vs. Region Overlap: The percentage of
objects recalled as a function of best overlap with ground
truth. For BSDS, we generate better proposals for all
levels of overlap. For Pascal, we outperform the baselines
for higher recall levels and are still comparable at 50%
overlap. Note that we use 20-30 times fewer regions than
the baselines.

It is clear from Figure 6 that the initial hierarchical
segmentation is not well suited for proposing object
candidates. After merging proposals, the segmentation
quality is comparable to our method, but as Figure 7
shows, it produces more than an order of magnitude
more proposals. For both datasets, our method produces
more high quality proposals for overlaps greater than
65%.

6.3 Ranking Performance

We compare our ranking method to three baselines. The
first method scores each proposal independently, and the
ranking is produced by sorting these scores from high to
low. Positive examples are chosen from a pool proposals
with at least 50% overlap with some object and negative
examples have no more than 35% overlap with any
object. The second baseline includes the overlap penalty
of our method, but learns the appearance model and
trade-off terms separately, as in [27]. The final baseline
simply assigns random ranks to each proposal. This

1
0.9k : R . PR : R s
o
0.8 =
0.7~ =
o
K]
g 0.6 B
2 A
3 05 4
Il
T 04 B
S
2 Il Model
03 Ful .q el i
Classifier + Overlap
0.2 Random i
Classifier
01l . o B @ Merged Regions Lo
Hierarchical Segmentation
0 I I T T
10° 10* 10° 10° 10" 10°
Mean Proposals/image
(a) Region: BSDS
1
0.9k : R . PR : R s
0.8 L] =

0.7

0.6

0.5

0.4

Recall at 50% Overlap

Full Model
= Classifier + Overlap
Random e

0.3

0.2
= Classifier
01r o : @ Merged Regions s
A Hierarchical Segmentation

0 I I
10° 10° 10" 10°
Mean Proposals/image

(b) Region: Pascal VOC 2011 Segmentation val

Fig. 7. Recall vs. number of proposals per image: When
considering recall for more than 50 proposals per image,
enforcing diversity (Random) is a more important than
object appearance (Classifier). Combining diversity and
appearance (Classifier + Overlap) improves performance
further, and jointly learning both (Full model) gives even
further gains.

can be seen as encouraging diversity without taking
into account appearance. To evaluate the quality of our
ranker, we measure the number of objects recalled when
we threshold each image’s bag at a certain size. The
results are presented in Figure 7.

We find that by jointly learning the appearance and
suppression models, our method outperforms each of
the baselines. Because the independent classifier does
not encourage diversity, only the first object or object-like
region is given a high rank, and the number of proposals
required to recall the remaining objects can be quite
high. In fact, when considering more than 50 proposals,
the random ranker quickly outperforms the independent
classifier. This emphasizes the importance of encourag-
ing diversity. However, both models that include both
appearance models and overlap terms outperform the
random ranker. Finally, by learning with an appropriate
loss and jointly learning all of the parameters of the
model with structured learning, we achieve small but
noticeable gains over the baseline with an overlap term.

In Figure 8 we isolate the influence of each of the
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Fig. 8. Effects of Ranker Scoring Function: The baseline
(Max) only uses the maximum overlap with a higher
ranked proposal. Results are improved incrementally by
both binning the overlaps (Binned Max) and adding the
sum of higher ranked overlaps (Binned Max + Binned
Sum). The latter is used in the final system.

components of the ranker’s scoring function. First, we
consider the most basic overlap penalty term as used
in [27], consisting of the maximum overlap with a higher
ranked proposal (Max, i.e. the unbinned version of ¢,
in eq. 6). Next, we binning the output of the max
function, withouth the sum (Binned Max). Although it
is difficult to discern the benefit on BSDS, there is a
clear improvment on Pascal. Finally, by adding the sum
of the binned overlaps (Binned Max + Binned Sum),
which is representative of the final ranking procedure
used throughout the paper, we get further improvements
on Pascal. Note that each method is trained using the full
structured learning process.

Finally, we provide a breakdown of recall for individ-
ual categories of the Pascal VOC 2011 dataset in Figure 9.
These results are especially promising, because many of
the categories with high recall, such as dog and cat,
are difficult for standard detectors to locate. The low
performance for categories like car and sheep is mainly
due to the difficulty of proposing small regions (< 0.5%
of the image area, or < 1000 pixel area), especially
when the objects are in crowded scenes. The dependence
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Fig. 10.  Cross-Dataset comparison: Our method is
trained on VOC2011 (blue) and trained on BSDS (green).
Note that recall at both 50% and 75% overlap is quite
comparable at all ranks. There is only a small advantage
when training on the same set as testing, showing that
our method generalizes well and need not be retrained
for every new dataset.

of recall on area is shown in Figure 13. The highly
detailed ground truth pixel masks for bicycles makes
them extremely difficult to recall for our method.

6.4 Cross-Dataset Comparison

To explore our method’s ability to generalize to new
datasets, we compare the overall proposal performance
when trained and tested on the same set and across
datasets. In Figure 10, we find that training on BSDS
and testing on BSDS gives a slight gain over training
on Pascal. The greater diversity of objects in BSDS may
explain this advantage. In contrast, there is no significant
difference between training on BSDS or Pascal when
testing on Pascal. This result suggests that diversity of
training examples, rather than quantity, is more impor-
tant for our method to generalize. It also confirms that
our method generalizes well and does not need to be
retrained for each new dataset.
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of the categories with high recall are difficult for standard object detectors to recognize. For many categories, most of

the instances can be discovered in the first 100 proposals.

6.5 Comparison to Objectness,CPMC

Next, we compare to the Objectness [26] and CPMC [27]
methods.

Proposal Quality: Figure 11 compares the recall at
different overlap thresholds. With the region overlap
criteria, CPMC recalls more objects at higher overlaps,
especially when considering fewer proposals for each
image. Their pixelwise segmentation is able to give
more detailed segmentations. However, their proposals
have less diversity which limits recall when using lower
region overlap thresholds or the bounding box overlap
criteria. The Objectness method gives comparable levels
of recall at 50% bounding box overlap for both datasets,
but their aggressive non-maximum suppression proce-
dure causes recall to quickly drop for higher overlap
thresholds.

Ranking: Figure 12 compares the quality of the rank-
ing by showing the recall for different numbers of
proposals for each image. At 50% region overlap, our
method slightly outperforms CPMC at all ranks. How-
ever, at 75% overlap, their higher quality per-pixel masks
have higher recall for more than 30 proposals per image.
With bounding box overlap, our method and CPMC
perform comparably on BSDS, and our method has 5%
higher recall for most ranks on Pascal.

The Objectness ranking has a lower recall than both
methods for less than a few hundred proposals per
image. It performs comparably to our method at 500
proposals per image for BSDS and 2000 proposals for
Pascal.

Area: Figure 13 show the dependence of each method
on region or bounding-box area as a fraction of image
pixels. All of the methods excel with 90% — 100% recall
for regions which cover greater than 5% of the image.
However, both CPMC and Objectness appear to be more
sensitive to smaller objects. Our superpixel based repre-

sentation appears to give a good balance between giving
detailed segmentations while reducing the search space
for candidate objects.

7 CONCLUSION

We have introduced a procedure that generates a small,
but diverse set of category-independent object proposals.
By incorporating the affinity predictions, we can direct
the search for segmentations to produce good candidate
regions with far fewer proposals than standard segmen-
tations. Our ranking can further reduce the number of
proposals, while still maintaining high diversity. Our
experiments show that this procedure generalizes well
and can be applied for many categories.

The results on Pascal are especially encouraging, be-
cause with as few as 100 proposals per image, we can
obtain high recall for many categories that standard
scanning window detectors find difficult. This is quite
amazing, considering that the system had never seen
most of the Pascal categories during training!

Beyond categorization, our proposal mechanism can
be incorporated in applications where category models
are not available. When presented with images of new
objects, our proposals can be used in an active learning
framework to learn about unfamiliar objects. Alterna-
tively, they can be used for automatic object discovery
methods such as [21]. Combined with the description
based recognition methods [1], [2], we could locate and
describe new objects.

While this method performs well in general, it has
difficulty in cases where the occlusion boundary predic-
tions fail and for small objects. These are cases where
having some domain knowledge, such as appearance
or shape models can complement a generic proposal
mechanism. This suggests a joint approach in which
bottom-up region proposals are complemented by part
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or category detectors that incorporate domain knowl-
edge.
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Fig. 13. Recall vs. object size: The plot shows the percentage of recalled objects based on their area, relative to
the image size. Histogram bin edges are indicated by solid vertical lines. This demonstrates that uncovering smaller
objects is more difficult than larger objects, but for each dataset, more than 60% of objects between 0.3% and 1.1%
of the image are still recovered. This is due to weaker object cues and because the region overlap criteria is more
sensitive to individual pixel errors for smaller objects. The dashed lines also show the proportions of the dataset for
each object size.



