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Abstract —Measuring image similarity is a central topic in computer
vision. In this paper, we propose to measure image similarity by learning
from the online Flickr image groups. We do so by: choosing 103 Flickr
groups; building a one-vs-all multi-class classifier to classify test images
into a group; taking the set of responses of the classifiers as features;
calculating the distance between feature vectors to measure image
similarity. Experimental results on the Corel dataset and the PASCAL
VOC 2007 dataset show that our approach performs better on image
matching, retrieval, and classification than using conventional visual
features. To build our similarity measure, we need one-vs-all classifiers
that are accurate, and can be trained quickly on very large quantities
of data. We adopt an SVM classifier with a histogram intersection
kernel. We describe a novel fast training algorithm for this classifier:
the Stochastic Intersection Kernel MAchine (SIKMA) training algorithm.
This method can produce a kernel classifier that is more accurate than
a linear classifier, on tens of thousands of examples in minutes.

Index Terms —Image Similarity, Kernel Machines, Stochastic Gradient
Descent, Online Learning, Image Classification, Image Organization.

1 INTRODUCTION

Digital cameras have made it much easier to take photos,
but organizing those photos is still difficult. As a result,
many people have thousands of photos sitting on their
hard disk in some miscellaneous folders but do not
know or do not have time to organize them. Fortunately,
the same digital explosion that created the problem
may also supply the solution. Users on online photo
sharing sites, like Flickr, have organized many millions
of photos into hundreds of thousands of semantically
themed groups. These groups expose implicit choices
that users make about which images are similar. Flickr
group membership is usually less noisy than Flickr
tags, because images are screened by group members.
Furthermore, Flickr groups can represent richer themes
than regular tags and object categories. For example,
there is a Flickr group called “No-Flash Night Shots”
that highlights shots which are taken at night and in-
volve long exposures. Flickr group membership patterns
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capture rich notions of image similarity. In this paper,
we exploit these group membership patterns to learn
a measure of similarity for pairs of test images. More
specifically, two images are considered to be similar if
they are likely to belong to the same set of groups. We
use this measure to help a user query a photo collection
with text or with images, and refine this search with
simple relevance feedback. In doing so, we allow flexible,
on-the-fly interaction between the user and the photo
album.

We measure the likelihood that an image belongs
to a particular Flickr group using a trained classifier.
There are many Flickr groups, each with many examples,
so we require an efficient training algorithm. In this
paper, we describe a new method to learn support vector
machines (SVMs) with a Histogram Intersection Kernel
(HIK), which has been shown to outperform linear ker-
nels for histogram-based image classification [14], [19].
Our method combines the kernelized stochastic learning
algorithm from [17] with the support vector approxima-
tion method [27] proposed for fast classification. The re-
sult is an algorithm that is much faster and more accurate
than the original stochastic learning algorithm, allowing
us to learn from five thousand examples with 3000
dimensional features in just 15 seconds. Our algorithm
is also memory-efficient, since training examples are
processed one-by-one. Our SVM-HIK training algorithm
is useful for a variety of recognition tasks the employ
histogram-based features.

An image is represented with a vector, whose com-
ponents represent the strength of association to each
Flickr group, as measured by our trained classifiers. To
compute similarity between two images, we compute
Euclidean distance between the feature vectors, which
reflects that similar images should belong to the same
Flickr groups.

Our experiments show that our training algorithm
is efficient and provides accurate Flickr group classi-
fiers. Our ultimate goal, however, is to use the Flickr-
learned similarities for other image classification and
organization tasks. We show that our learned similarity
measure outperforms the original visual features for
image matching and clustering on the Corel dataset.
We also show that the learned similarities lead to more
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effective relevance feedback [34]. Taking advantage of
the text attached to Flickr groups, we also demonstrate
effectiveness in retrieval from text queries. Finally, we
apply our method to calculate kernel values for the im-
age classification task on the PASCAL VOC 2007 dataset
[12]. Our novel similarity kernel outperforms the kernel
based on visual features on 12 of 20 object categories.

To summarize, this paper includes two contributions:
(1)We show how to use implicit knowledge of simi-

larity (represented by the Flickr image groups) to train
a measure of image similarity. This idea can be gen-
eralized. For example, one might use an online music
directory to measure music similarity.

(2)We propose a fast and memory-efficient algorithm
to train histogram intersection kernel machines, which
is applicable to many recognition tasks.

1.1 Related work

Measuring image similarity is an important research
problem in computer vision. Traditional approaches usu-
ally extract low-level visual features (e.g., texture fea-
tures [20], [36], [46], shape features [4], [16], and gra-
dient features [25], [9]) from images, and match them
using distance metrics such as the Euclidean distance,
the Chi-Square distance, the histogram intersection [40],
and the EMD distance [33]. Our paper addresses this
problem by learning middle-level image representation
from Flickr groups. Our method can exploit hundreds
of thousands of Flickr images to discover discriminative
visual patterns. Meanwhile, our results are interpretable:
we can say what makes two images similar by finding
out their shared group memberships.

Our work is related to a number of recently emerged
papers which build image representation based on the
outputs of concept classifiers [32], [18], [45], [22]. Our key
novel observation is that Flickr provides an organization-
al structure with thousands of categories. Our learned
similarity from Flickr groups can reflect how people on
the Internet tend to group images.

We train Flickr group classifiers using many Internet
images. Several previous papers [13], [21], [37], [47]
also learn object models from Internet images, but they
tend to gather training examples using text-based image
search results, which are not reliable. Their approaches
have to alternate between finding good examples and
updating object models, in order to be robust against
noisy images. In contrast, we use images from Flickr
groups, which are screened by the Flickr group members
and clean enough to produce good classifiers.

We aim to organize images on the fly using the
learned image similarity. There is an extensive content-
based image management literature, with recent reviews
in [10], [23]. Appearance [41] or iconic [15] matching
are well established techniques. Clustering images as a
way to expose the structure of a collection dates back
to at least [3], [2]. Annotating images with words to
allow word searches dates back to at least [3]. None of

these technologies works terribly well. When managing
family albums, face annotation [49], [53] is especially
interesting. Automatic face annotation and retrieval is
hard. Active human annotation is usually needed to
improve the performance. [8], [42] develop approaches
to reduce the efforts of human intervention. Different
from the above methods, we exploit the organization
structure of Flickr image groups to learn image similarity
to organize images.

We wish to train a very large scale kernel SVM. This
is an important research problem as we have bigger and
bigger datasets in computer vision such as the Lableme
dataset [35] and the ImageNet dataset [11]. There is
a good survey on large-scale kernel machine training
in [6]. Algorithms are generally of two classes: one
exploits the sparseness of the lagrange multipliers (like
SMO [31] and its variants); the other one uses stochastic
gradient descent on the primal problem. Stochastic gra-
dient descent has the advantage that, at each iteration,
the gradient is calculated for only a single training
example. Very good results can be obtained without
touching every example [38], [5]. Kivinen et al. describe a
method that applies to kernel machines [17]. However,
it has to drop support vectors in the process, because
of which classification accuracy drops. We exploit the
method of Maji et al. [27] to quickly evaluate a histogram
intersection kernel and efficiently keep existing support
vectors. No support vectors have to be dropped, and
the training is fast. This proposed training algorithm
is further extended to minimize an objective function
enforcing similarity constraints in our later work [48].

This paper is an extension of our published conference
paper [51]. We have provided more details in the algo-
rithm section. We have also added more experiments, in
particular, testing how the performance changes with d-
ifferent number of quantization bins, with more training
data, and with different number of Flickr groups, etc.

2 APPROACH

We consider two images to be similar if people are
likely to organize them into the same groups. We have
found Flickr groups to be a more meaningful content
indicator than other surrounding meta-data, such as tags
and captions. Our basic approach is to download images
from each group and to train classifiers that distinguish
between photos that belong to the group and those
that do not. To get reliable classifiers, many (tens of
thousands of) training images are used for each group as
the training data. Previous training methods with non-
linear kernels cannot handle so many training examples.
In this paper, we propose a new approach to train kernel
machines using a histogram intersection kernel, namely
Stochastic Intersection Kernel MAchines (SIKMA). This
algorithm is fast and memory efficient. We apply group
classifiers to predict the group memberships of each
test image. Image similarity is then measured using the
Euclidean distance between prediction scores.
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Fig. 1. Image examples from ten Flickr groups. Each row corresponds to a group. These groups are: aquariums, cars, Christmas, sunset,
skyscrapers, boat, bonsai, food, fireworks, and penguin.
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2.1 Downloading Flickr image groups

We download 103 Flickr image groups that span a wide
range of topics, avoiding groups, such as “B&W photog-
raphy” that do not refer to scene content. Groups that
we use include objects, such as “aquariums” and “cars”;
scenes, such as “sunsets” and “urban”; and abstract con-
cepts, such as “Christmas” and “smiles”. We provide the
complete list (paraphrased) below: aquariums, airplanes,
American flags, animals, architecture, art, bags, beaches,
bees, bikes, birds, boats, bonsai, bottles, bridges, buses,
butterflies, cameras, candles, cars, castles, cats, chairs,
characters, children, Christmas, churches, concerts, cows,
dances, dogs, dolphins, drawings, ducks, eagles, eating,
eggs, faces, fashion, ferns, ferrets, fireworks, fishing,
flamingos, flowers, fog+rain, food, frogs, fruits, the Gold-
en Gate Bridge, hands, helicopters, horses, ice, insects,
laptop lunch, light, lizards, love, macro-flower, monkeys,
moons, motorbikes, mountains, mushrooms, painting,
pandas, penguins, people, plants, rain, rainbows, rural,
sheep, skateboarding, skies, skyscrapers, smiles, snails,
sneakers, snow, socks, spiders, sports, squirrels, stairs,
sunset, sushi, tea cup, teddy bears, tigers, tomatoes, toys,
trains, trees, trucks, turtles, urban, watches, water drops,
waterfalls, and weddings.

Some image examples are shown in Fig. 1. Compared
to Flickr tags and other metadata, the images within a
Flickr group are consistent in theme. Our experiments
use 15,000 to 30,000 images in each of the 103 groups.

2.2 Training group classifier using Stochastic Inter-
section Kernel MAchines (SIKMA)

For each Flickr group, we train a histogram intersec-
tion kernel classifier to predict whether a test image
belongs to it. Each Flickr group usually contains tens
of thousands of images, which can be used as positive
examples. To train a discriminative classifier, we also
sample a large number of negative images from other
groups. We usually use around 80,000 training images to
learn each group classifier. Traditional approaches such
as SMO [31] cannot handle so many training examples
for reasons of computation and memory. In this paper,
we describe a new training algorithm called Stochastic
Intersection Kernel MAchines (SIKMA). It is an online
learning algorithm, meaning that it processes training
examples one by one in a sequence and hence does not
have the memory issue. Using the histogram intersection
kernel, we combine the fast evaluation method develope-
d in Maji et al. [27] with the stochastic gradient descent
method, which leads to a very fast training algorithm.

We start by introducing the general stochastic kernel
machine framework described in [17]. We have a list of
training examples {(xt, yt), t = 1, · · · , T, yt ∈ {−1,+1}}.
We aim to learn a decision function f : X −→ R,
using a kernel machine. This yields f =

∑N

i=1 αiK(xi, •)
where K is a kernel function. Then for a test example

u, the classification score is f(u) =
∑N

i=1 αiK(xi,u).

In a primal method, we learn the kernel machines by
minimizing the regularized empirical risk:

L =
1

T

T
∑

t=1

l(f(xt), yt) +
λ

2
‖f‖2 (1)

where l is a loss function. A hinge-loss l(f(xt), yt) =
max(0, 1 − ytf(xt)), which is used in the conventional
support vector machine framework, is also used here.
But other loss functions such as log-loss can also be
applicable. We describe our approach using the hinge-
loss. Equation (1) can be minimized directly using the
gradient descent method in the primal space. At the tth
iteration, we update f using:

ft = ft−1 − ηt
∂L

∂f
|f=ft−1

(2)

ηt is the learning rate at the tth step. Evaluating equation

(2) involves calculating
∑T

t=1
∂l(f(xt),yt)

∂f
|f=ft−1

, which is
very expensive when T is big.

Using the stochastic gradient method, we approximate
the gradient by replacing the sum over all examples
with a sum over a subset chosen at random, and then
take a step. It is usual to consider a single example. In
Kivinen et al.’s method [17], one sees this as presenting
the training examples to the classifier in some random
order, one by one, then updating the classifier at each
example to get a set of f , {f0, f1, ..., fT }, where f0 is
some initial hypothesis, ft−1 is the learned classifier by
seeing the first t− 1 training examples. Now assume we
have ft−1. When the tth training example comes, the
new objective function is:

Q = l(f(xt), yt) +
λ

2
‖f‖2 (3)

we update f as:

ft = ft−1 − ηt
∂Q

∂f
|f=ft−1

(4)

When l is the hinge-loss, the update becomes

∂Q

∂f
|f=ft−1

=
∂l(f(xt), yt)

∂f(xt)

∂f(xt)

∂f
|f=ft−1

+ λf |f=ft−1
(5)

=
∂l(ft−1(xt), yt)

∂ft−1(xt)
K(xt, •) + λft−1 (6)

= −σtK(xt, •) + λft−1 (7)

by writing

σt =

{

1 if ytft−1(xt) < 1
0 otherwise

(8)

Then (4) is equivalent to:

ft = (1− ληt)ft−1 + ηtσtytK(xt, •) (9)

This update can also be written in terms of the lagrange
multipliers for the examples seen to date. In particular,
we can write αi = (1 − ληt)αi for i < t and αt = ηtσtyt.
It is hard to detect the convergence of the stochastic gra-
dient descent method. In our implementation, we find it
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usually takes tens of thousands of iterations to produce a
stable classifier. When there are fewer training instances,
we let the algorithm visit each instance multiple times.

When there are a large number of support vectors
(this would happen in large datasets), it is expensive to
calculate ft−1(xt) in (8) because it involves calculating
kernel values for many pairs of points. The NORMA
algorithm developed in [17] keeps a set of support
vectors of fixed length by dropping the oldest ones. As
pointed out by [17], it is difficult to choose the number of
support vectors, which trades off between the memory
and computational efficiency and the accuracy. In our
experiments, we find dropping support vectors usually
produces considerable cost in accuracy.

When a histogram intersection kernel is used, we
do not need to drop any support vectors and can still
maintain the efficiency. The histogram intersection kernel
has a strong performance record in computer vision [14],
[19]. Recently, Maji et al. [27] show that the support vec-
tors of an intersection kernel machine can be efficiently
represented. We exploit this trick to train a fast stochastic
intersection without dropping any support vectors.

Write ft−1 as
∑Nt−1

i=1 αiK(xi, •), where K denotes the
histogram intersection kernel; write D as the feature
dimension. Then

ft−1(xt) =

Nt−1
∑

i=1

αi

D
∑

d=1

min(xi(d), xt(d)) (10)

=
D
∑

d=1

Nt−1
∑

i=1

αimin(xi(d), xt(d)) (11)

At each dimension d, if we have the sorted values of
xi(d) as xi(d), with the corresponding αi, then:

Nt−1
∑

i=1

αimin(xi(d), xt(d)) (12)

=
r

∑

l=1

αlxl(d) + xt(d)

Nt−1
∑

l=r+1

αl (13)

where xr(d) ≤ xt(d) < xr+1(d). As [27], we use M

piecewise linear segments to approximately calculate
(13). Given that feature histograms are normalized, each
element of the feature vectors falls in the range of [0 1].
We divide this range to M bins, and the starting value of
each bin is recorded in vector P . Note that the bins are
not necessarily even: in practice, we assign more bins to
the range (e.g., [0 0.01]) which has more data points.

Note that the terms of equation (13) contain only
partial sums of α, rather than the values. This means that
the complexity of representing the kernel machine has
to do with these partial sums, rather than the number
of support vectors. We can store these sums in tables,
and update them efficiently. In particular, we have two
tables B1 and B2 with dimensions M×D, where M is the
number of bins and D is the feature dimension. B1(m, d)
contains the value

∑

i αixi(d)σi, σi = 1 if xi(d) < P (m)

and zero otherwise; B2(m, d) stores the value
∑

i αiσi,
σi = 1 if xi(d) ≥ P (m) and zero otherwise.

To evaluate the function for xt(d), we quantize xt(d)
and look up in B1 and B2. The two values are interpolat-
ed to approximately calculate (13). Since the elements of
the tables are linear in the lagrange multipliers, updating
the tables is straightforward. At the tth iteration both B1

and B2 are multiplied by 1 − ληt. If σt (see (8)) is non-
zero, the tables B1 and B2 are updated accordingly by
adding xt.

Our method involves quantization. Because we quan-
tize each dimension separately and the values are typ-
ically small, our approximation does not significantly
impact performance when using a moderate number
of bins (e.g., 50). In Table 1, we show that very close
performance is achieved using our method compared to
the exact solution. Maji et al. [27] show the similar obser-
vation on pedestrian detection using the fast histogram
intersection kernel evaluation method.

Computational Complexity: From the above descrip-
tion, we can see that the computational complexity of
training the SIKMA is O(TMD), where T is the number
of training examples that are touched, M is the quan-
tization bin size, and D is the feature dimension. And
the computational complexity of the NORMA algorithm
[17] is O(TPD), where P is the number of kept support
vectors. P is usually large when there are many features
and many training examples, as in our case.

Comparison to Maji et al.[26]: Maji et al.[26] devel-
oped (in parallel) a related method to speed up SVM
training. Our method directly minimizes the objective
function in the kernel space. Their method first encodes
data approximately. Once this is done, the problem
becomes linearly separable, and then a fast linear SVM
solver such as PEGASOS [38] can be applied.

2.3 Measuring image similarity

For two test images, we use the trained Flickr group clas-
sifiers to classify them and get prediction scores. Then
the distance between prediction vectors are calculated
using the Euclidean distance. We have experimented
with metric learning approaches to weight the prediction
scores of different Flickr groups, but found the simpler
Euclidean distance equally effective.

Once computed, this similarity measure can be used to
perform image-based queries or to cluster images. Since
we have names (groups) attached to each prediction, we
can also sometimes perform text-based queries (e.g., “get
images which are likely to contain people dancing”) and
determine how two images are similar.

3 FEATURES AND IMPLEMENTATION DETAILS

Following [50], we adopt four types of features to rep-
resent images. The SIFT feature [25] is widely used for
image matching [39], [30] and object recognition [52]. We
employ it to detect and describe local patches in this
paper. We extract about 1,000 patches from each image.
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The SIFT features are quantized to 1,000 clusters and
each patch is denoted as a cluster index. Each image
is then represented as a normalized histogram of the
cluster indices. The Gist feature has been proven to be
very powerful in scene categorization and retrieval [29],
[44]. We represent each image as a 960 dimensional Gist
descriptor. We extract Color features in the RGB space.
We quantize each channel to 8 bins, then each pixel is
represented as an integer value range from 1 to 512.
Each image is then represented as a 512 dimensional his-
togram. We also extract a very simple Gradient feature,
which can be considered as a global and coarse HOG
feature [9]. We divide the image to 4*4 cells, at each cell,
we quantize the gradient to 16 bins. The whole image is
represented as a 256 dimensional vector.

For each Flickr group, we train four SVM classifiers,
one for each of the above four features. We combine
the outputs of these four classifiers to produce a final
prediction score. We use a validation data set to tune
the weight parameters. In the validation procedure, we
first randomly generate 10,000 different combinations of
weights, then choose the one that maximizes the perfor-
mance on the validation data set. The final prediction
score is used to measure image similarity.

We apply the Euclidean distance to calculate the dis-
tance between Flickr prediction vectors and the distance
between visual feature vectors. In particular, when we
compute distance between visual feature vectors, we
weight the four types of features (namely, SIFT; GIST;
Color; and Gradient) differently. This is because some
features are more discriminative than the others. The
weights are learned on a validation set, where we choose
weights that force images from the same categories to
be close and images from different categories to be far
away with the learned weights. Similar approaches have
been applied in [28], [50]. This approach is observed to
produce a better baseline. Since our method exploits the
histogram intersection kernel to train the Flickr group
classifier, we also test a second baseline, which calculate
the similarity between visual feature descriptors with the
histogram intersection. Again, different types of features
are weighted differently via validation.

Most groups contain 15,000 to 30,000 images. To train
a discriminative group classifier, we sample about 60,000
negative images from other groups. Training each SVM
using our SIKMA algorithm takes about 150 seconds.
The resulting kernel machine classifier tends to have
between 5,000 and 8,000 support vectors. This is remark-
able, considering that standard batch training is infeasi-
ble and that NORMA [17] would take much longer to
produce a much less accurate classifier.

4 EXPERIMENTS

In Section 4.1, we compare our fast histogram intersec-
tion SVM training algorithm (SIKMA) to alternatives. We
show that our method is much faster and more accurate
than a recently proposed stochastic learning method [17].

Our method is nearly as accurate as batch training on
small problems involving a few thousand examples and
enables training with tens of thousands of examples. For
example, our method can train on 120,000 examples in
80 seconds.

In Section 4.2, we evaluate our learned similarity
in several ways. We show that our similarity measure
allows much better image matching on the Corel dataset
and improves more with relevance feedback. We can also
perform text-based searches on non-annotated images in
some cases.

4.1 SIKMA Training Time and Test Accuracy

We first compare batch training, an existing stochastic
learning algorithm NORMA [17], and our proposed
algorithm SIKMA with the histogram intersection kernel
and linear SVM on the PASCAL VOC 2007 dataset [12].
We choose this dataset because it is a popular benchmark
dataset and has a proper number of images: around
5,000 for training and 5,000 for test. The batch learning
method is implemented in LIBSVM [7]. LIBSVM does not
support histogram intersection kernel directly, so we pre-
compute the kernel matrix with a Mex function and use
LIBSVM to solve it. In NORMA, we set the number of
kept support vectors as 500, 1000, and 1500 respectively.
λ is validated for each category. Following [5], in SIKMA,
the learning rate is set to be 1

λ(t+100) , and λ is set to be
0.00005. For this comparison, the number of quantization
bins is set to be 50. We also compare with linear SVM
implemented in LIBSVM [7], where the parameter C is
also cross validated.

The experiment is conducted on the PASCAL VOC
2007 image classification task, which has 20 object class-
es. We use a 3000-bin histogram of quantized SIFT code-
words as features. The average precision (AP) results,
training time and test time of different methods are
compared in Table 1. The time of feature extraction is not
included to report the training and test time for all the
methods. Our method achieves similar accuracy to batch
training when running for 6 rounds and is more accurate
than either NORMA (also with histogram intersection
kernel) or batch training of linear SVMs. When more
support vectors are kept, the NORMA algorithm can
achieve better accuracy. However, the training time and
test time increase accordingly. Its accuracy is still lower
than our SIKIMA algorithm when keeping 1500 support
vectors, and it takes more than 10 times longer to train
(compared to the SIKMA (3)).

And for larger problems, the speedup of our SIKMA
algorithm over batch will increase dramatically, and
NORMA will be forced to make larger approximations
at cost to classifier accuracy. We run another experiment
to compare SIKMA and NORMA on 124, 000 images
(including 20,000 bus images and 104,000 non-bus im-
ages; all are downloaded from Flickr groups). The test
set includes 500 bus images and 20,800 non-bus images.
Each image is represented as a 1,000 dimensional “bag
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Linear NORMA (SV=500) NORMA (SV=1000) NORMA (SV=1500) SIKMA (3) SIKMA (6) Batch (HIK)
AP 0.362 0.308 0.374 0.411 0.429 0.436 0.440

training time (seconds) 0.8 172.4 304.4 396.5 23.1 46.7 638.0
test time (seconds) 0.5 63.9 122.4 178.8 3.9 3.9 236.8

TABLE 1
Average precision (AP), training time and test time of different SVM training methods are compared on the PASCAL

VOC 2007 image classification task. All the values are averaged over the 20 object categories. The histogram
intersection kernel is used except the linear SVM. NORMA (SV=500) denotes the performance of the NORMA

algorithm when at most 500 support vectors are kept. NORMA (SV=1000) denotes the performance when 1000
support vectors are kept. And NORMA (SV=1500) denotes the performance when 1500 support vectors are kept.

SIKMA (3) denotes the SIKMA algorithm visits each training example three times. SIKMA (6) denotes each training
example is visited six times.

SIKMA NORMA (SV=1000) NORMA (SV=2000) NORMA (SV=3000)
AP 0.598 0.469 0.483 0.500

training time (seconds) 81.5 2556.0 5050.2 7402.6
test time (seconds) 4.2 130.1 256.7 383.9

TABLE 2
Average precision (AP), training time and test time of different training methods are compared on a larger problem

(124,00 training images and 21,300 test images). NORMA (SV=1000) denotes the performance when 1000 support
vectors are kept; NORMA (SV=2000) denotes the performance when 2000 support vectors are kept; NORMA

(SV=3000) denotes the performance when 3000 support vectors are kept.

of words” feature. Each training example is visited twice
by both SIKMA and NORMA algorithms. Even keeping
3,000 support vectors, the performance of NORMA is
poor, since many support vectors are dropped. Our SIK-
MA algorithm is 90 times faster compared to NORMA
(3000).

When training with SIKMA, we need to use piecewise
linear segments to approximate the continuous values.
The approximation accuracy is controlled by the num-
ber of quantization bins. We perform an experiment to
investigate how the performance is affected by the bin
size. The results are summarized in Table 3 (each training
example is visited three times). Training time and test
time go up when we use more levels since we need
to update more parameters. The best performance is
achieved using 50 bins. There is not much change with
more bins (some small drop is observed; it might be be-
cause our algorithm randomly picks training examples,
hence randomness is introduced).

We apply the SIKMA algorithm to train group clas-
sifiers for the 103 Flickr groups listed in Section 2.1.
For each Flickr group, there are 15,000 to 30,000 positive
images as well as about 60,000 negative images sampled
from other groups. Each group has 20,900 held out test
times: 500 positive and 20,4000 negative. An AP score
is calculated for each group. Fig. 3 shows the AP scores
for all the 103 Flickr groups. The average AP over these
categories is 0.433. We can see the SIKMA algorithm
can produce reliable classifiers, which is very important
for measuring image similarity. We use Flickr groups as
the resource to learn image similarity partially because
Flickr groups have a large number of images, which can
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Fig. 2. The average AP values over the 103 Flickr categories. The
X-axis denotes different percentages of training images (of each Flickr
group) used at each time.

be exploited to learn more accurate concept classifiers
compared to learning with a small number of training
examples. To show that more data helps, we do similar
experiments as above, but with different percentages of
images from each group as training data (10%, 20%, 50%,
and 100% respectively). We keep the test data the same.
Average AP values are shown in Fig. 2. Using more data
significantly improves the classification performance.

4.2 Evaluation of Learned Flickr Prediction Features

We evaluate our learned Flickr prediction features on
image retrieval, on image clustering, and on image



8

bins 10 20 50 80 120 150 200
AP 0.401 0.410 0.429 0.426 0.427 0.424 0.425

training time (seconds) 9.9 12.8 23.1 25.3 35.0 38.1 54.2
test time (seconds) 2.7 3.2 3.9 4.3 4.6 4.8 5.1

TABLE 3
The AP values, training time, and test time of SIKMA using different number of bins. All the numbers are averaged

over the 20 object categories. Each training example is visited for three times in this implementation.
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Fig. 3. The AP scores of the 103 Flickr groups (categories). For each
category, There are 20,900 held-out examples (500 positive). The five
groups which get the highest AP values are: laptop lunch, fireworks,
pandas, socks and moon; the five groups which get the lowest AP values
are: love, art, trees, ice and light.

classification. The results show that our learned features
perform better than the conventional visual features on
all these tasks.

4.2.1 Image retrieval and clustering

We measure image similarity by calculating the Eu-
clidean distance between Flickr prediction features. The
quality of similarity measurement is the most important
factor in automatic organization. We evaluate it in sev-
eral ways. We can rank images according to similarity
(image-based query) or cluster a set of images. We can
also find images that are likely to belong to particular
groups or have certain tags. We can also say how two
images are similar, suggesting the possibility of more in-
tuitive feedback mechanisms. The following experiments
are performed on 38,000 images from the Corel dataset
(except where noted), which has been popularly used
to evaluate image retrieval and organization methods
[1], [43]. Each image is associated with a CD label and
a set of keywords. A CD contains 100 visually similar
images. Hence both CD labels and keywords are used
as ground truth for matching. Each image has roughly
3-5 keywords.

We first evaluate our method on image query based
matching. 30,000 Corel images are used as the test bed,
among which 500 images are randomly chosen as query
images. For each query image, the other images are

ranked using different similarity measures. Images from
the same CD in the Corel dataset share the same theme.
Hence images that have the same CD label or at least one
keyword in common are considered as correct matches;
others are incorrect matches. An AP value is calculated
for each query image. When using “visual features +
Euclidean distance”, the averaged AP value over all the
query images is 0.110; when using “visual features +
histogram intersection”, the averaged AP value is 0.114;
when using our learned similarity, the average AP value
is 0.123. We can see using Flickr groups provides a more
accurate measure of similarity. In Fig. 4, we show the
25 nearest neighbor images found for each of 4 image
queries. Images are sorted by similarity in descending
order from left to right, top to bottom. Two methods are
compared: one is “visual features + Euclidean distance”;
the other one is our learned similarity (also indicated
as “Flickr prediction features”). We can observe that our
method can find more relevant nearest neighbors. For
example, for the top left “ship” image query, the nearest
neighbor images found by our method are more likely to
contain ship inside; while the nearest neighbors images
found using visual features are more about mountains
and animals. This is because our method can learn more
powerful features from the Flickr image groups.

It is intuitive that the learned similarity works best
when queries are related to the learned Flickr categories.
When more Flickr categories are use, fewer queries will
be out of sample. Note that 1,000 classifications per
second can be performed after computing the features, so
it is entirely feasible to use thousands of Flickr categories
(downloading tens of millions of images is the main
obstacle for training).

We perform an experiment to investigate how the
matching performance changes with the change of the
number of the Flickr groups. At each time, we randomly
select a subset of Flickr groups (for example, 10). Then
in the matching procedure, only the prediction scores
of these groups are used to measure image similarity.
We calculate the averaged AP value over the 500 query
images mentioned above. There is much variation when
different subsets of Flickr groups are chosen. We repeat
sampling Flickr groups 15 times for each number of
groups. The mean and standard deviation values for
different numbers of groups are shown in Fig. 5. The
performance increases with more Flickr groups. We can
also observe that the gain is not so significant when
increasing from 70 groups to 100 groups. This may
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Query image 25 nearest neighbors with visual features 25 nearest neighbors with Flicr prediction features Query image 25 nearest neighbors with visual features  25 nearest neighbors with Flicr prediction features

Query image 25 nearest neighbors with visual features  25 nearest neighbors with Flicr prediction features Query image 25 nearest neighbors with visual features  25 nearest neighbors with Flicr prediction features

Fig. 4. This figure shows the nearest neighbor images found for each of the 4 image queries. For each query image, the left column shows
the query itself; the center column shows the 25 nearest neighbor images found with visual features and the Euclidean distance; the right column
shows the 25 nearest neighbor images found with our Flickr prediction features. The rank is from left to right, from top to bottom.
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Fig. 5. The AP values of using different number of Flickr groups. For
each number, we repeat 15 times to randomly select a subset of groups.
Both mean and standard deviation values are shown in the figure.

suggest that Flickr groups share some common visual
patterns, learning from a number of Flickr groups is also
effective for out of sample image queries.

Image matching is a hard task. Human intervention
can be very useful for finding similar images as humans
can implicitly or explicitly suggest what features to look
at. Relevance feedback is a very popular technique in
image retrieval to enforce human intervention. A good
similarity measure should allow effective feedback. In
our experiment, using a subset of 10 CDs, we investi-
gate the effectiveness of simple relevance feedback with
different types of features. Because users will provide
very little feedback (we use 5 positive and 5 negative
examples), a good simulation of this task is demanding.
We use the same CDs as in [24], which are chosen

to provide unambiguous ground truth: 1 (sunsets), 21
(race cars), 34 (flying airplanes), 130 (African animals),
153 (swimming), 161 (egyptian ruins), 163 (birds and
nests), 182 (trains), 276 (mountains and snow) and 384
(beaches). Images are considered to match only when
they have the same CD label. We compute the average
AP value over 25 randomly selected image queries. For
both visual features and Flickr prediction features, we
initialize the weights as ones. To simulate feedback, after
each query, we select the top five negative examples
and five randomly chosen positive examples among
the top 50 ranked images and label them according to
ground truth. We use this to train a weight vector to
produce a new distance metric. This is a very simple
metric learning procedure. With the feedback, we aim to
minimize the following objective function:

10
∑

i

yiw • (xq − xi)
2 (14)

Subject to wd ≥ 0,
∑

d wd = 1 where xq is the feature
representation of the query image. xi is the feedback
example. yi is 1 if it is positive, and 0 otherwise. If
we had very extensive feedback, we would have a
good estimate of the cost function. With relatively little
feedback, the model of cost applies only locally around
the current values of w. For this reason, we take a single
step down the gradient, then project to the constraints.
The scale of the step is chosen on a validation set of 20
queries, and then fixed.

The average AP values over these 25 query images
are compared in Fig. 6, with different rounds of rele-
vance feedback. We can see that at the beginning, Flickr
prediction features don’t work much better than visual
features. However, with relevance feedback, prediction
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Fig. 6. The average AP values with three rounds of feedback. The red
line shows the results with Flickr prediction features and the blue line
shows the results with visual features.

features perform much better. This suggests prediction
features are more effective for feedback. One possible
reason is that Flickr prediction features are more compact
(only with 103 dimensions), while visual features have
thousands of dimensions. We cannot learn a good dis-
tance metric in high dimensional spaces when training
examples are scarce.

Fig. 7 shows the nearest neighbor images without
relevance feedback and the nearest neighbor images after
the first round of relevance feedback for a query image
(using our Flickr prediction features). The selected neg-
ative images are shown in red and the selected positive
images are shown in green. We can see no false positives
are found in the 45 nearest neighbor images after only
learning with 5 positive and negative images.

One advantage of our method is that it can help us
understand what makes two images similar. In Fig. 8, we
show six pairs of similar Corel images. The text shows
the Flickr groups which both of the images are likely
to belong to. For example, the first pair of images are
considered similar because they are both likely to belong
to the following Flickr groups: mountains, castles, sheep,
turtles, and cows.

Good image similarity measures can not only help
image matching, but also help image clustering, which
is also a popular way to organize images. We perform
image clustering experiments on the images from the
10 CDs listed above. We represent these images with
our prediction features and visual feature respectively.
We cluster these 1000 images into 15 clusters in an
unsupervised way (K-means). Each cluster is labeled
with the most common CD label in this cluster. Then
each image is labeled by the cluster label accordingly.
The accuracy of Flickr prediction features is 0.559 and
the accuracy of visual features is 0.503. This shows our
learned similarity is also more effective for the image
clustering task.

We may want to access images via text based queries
(e.g., finding all the images associated with “cat”). In
our approach, each Flickr group is described by several
key words. When users input a word query, we can
find the Flickr group whose description contains such
a word. Then the corresponding Flickr group classifier
is used to classify all the images to find relevant ones.
We test this method on the Corel data set, with two
queries “airplane” and “sunset”. There are about 38,000
images in total, including 840 “airplane” images and 409
“sunset” images. We rank the images according to the
Flickr group classification scores. We get an AP value
0.28 for “airplane” and 0.16 for “sunset”. In the 100 top
ranked images for “airplane”, there are 52 true positives;
in the 100 top ranked images for “sunset”, there are 26
true positives. The Corel images which are most relevant
to “sunset” and “airplane” are shown in Fig. 9 according
to the classification scores.

4.2.2 Classification

We can also use our Flickr group predictions as features
for classification. In Table 4, we compare our prediction
features with visual features. As implemented in [50], for
the visual features, we train a chi-square kernel machine
with the unified features (chi-square kernel is the state-
of-the-art for histogram based image classification). Our
group prediction features are not histograms, so we have
to use an RBF kernel. Table 4 shows that our features are
usually more effective than the visual features that are
used to train the Flickr classifiers. Exceptions are objects
that are typically in the background, such as tables,
chairs, and bottles. This shows our Flickr prediction
features are also effective for the classification task.

5 CONCLUSIONS AND DISCUSSIONS

In this paper, we developed an approach to learn image
similarity from Flickr groups. The motivation is that
Flickr groups show how people would like to group
similar images on the Internet. Then two query images
can be considered similar if the are likely to belong
to the same set of Flickr groups. We also described
SIKMA, an algorithm to quickly train an SVM with
the histogram intersection kernel using tens of thou-
sands of training examples. We use SIKMA to train
classifiers that predict Flickr group memberships. Our
experimental results provide strong evidence that such
learned image similarity works better on many tasks
such as image matching and unsupervised clustering
than directly measuring similarity with visual features.

There are several explanations for the success of
learned image similarity. First, the predictions are dis-
criminative, and are trained using tens of thousands of
positive and negative training images. In our procedure,
interesting visual patterns that are beneficial for match-
ing and classification are preserved, while the others
are abandoned. By mapping a new query image to this
space, we can measure how affinity with these visual
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Query image 45 nearest neighbors without feedback

45 nearest neighbors after the first round of feedback

Fig. 7. The left column shows the query image; the center column shows the 45 nearest neighbors found with the Flickr
prediction features, the five negative images (in red) and five positive images (in green) are selected for feedback; after
one round of feedback, we get the 50 nearest neighbors shown in the right column.

mountains(3.0) castles(1.2) sheep(1.2) turtles(0.9) cows(0.6) dances(3.8) weddings(2.4) smiles(2.3) love(1.7) sports(1.4)

sports(2.6) dances(2.0) weddings(1.0) toys(0.5) horses(0.5)

painting(1.5) children(1.1) weddings(1.0) love(0.6) animals(0.6)!reworks(15.6) Christmas(7.6) rain(4.0) water drops(2.5) candles(2.0)

painting(2.4) art(1.2) macro-"owers(0.9) hands(0.9) skateboard(0.6)

Fig. 8. Six pairs of similar Corel images. The text shows the top five Flickr groups which both of the images are likely to belong to. The value for
each group in the parenthesis is 100 × p(group | image1)p(group | image2).
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aeroplane bicycle bird boat bottle bus car cat chair cow
Visual features 0.647 0.399 0.450 0.540 0.207 0.425 0.577 0.388 0.439 0.273

Prediction features 0.650 0.443 0.486 0.584 0.178 0.464 0.632 0.468 0.422 0.296
table dog horse motorbike person plant sheep sofa train monitor

Visual features 0.373 0.343 0.657 0.489 0.749 0.330 0.324 0.323 0.619 0.322
Prediction features 0.208 0.377 0.666 0.503 0.781 0.272 0.321 0.268 0.628 0.333

TABLE 4
The AP value with Flickr prediction features and visual features on PASCAL 2007 classification for each object class.

The top 25 images relevant to “airplane”

Fig. 9. The Corel images which are most relevant to the query
“airplane”, obtained by one-vs-all classification with our SIKMA method,
trained on the Flickr airplane group. Images are ranked according to
their classifier score.

patterns. Second, the Flickr prediction features are very
compact. As in our implementation, they only have 103
dimensions, while traditional visual features may have
thousands of dimensions. With compact representation,
relevance feedback can be more effective because it
deals with fewer parameters, as is confirmed by our
experiments. Third, the predictions are trained to agree
with human judgements, which seem to be based on
semantics. This means that our predictions should be
better at predicting concept-based similarity than pure
visual features.
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