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Abstract—In this paper, we address the problem of shadow detection and removal from single images of natural scenes. Different from
traditional methods that explore pixel or edge information, we employ a region based approach. In addition to considering individual
regions separately, we predict relative illumination conditions between segmented regions from their appearances and perform pairwise
classification based on such information. Classification results are used to build a graph of segments, and graph-cut is used to solve
the labeling of shadow and non-shadow regions. Detection results are later refined by image matting, and the shadow-free image is
recovered by relighting each pixel based on our lighting model. We evaluate our method on the shadow detection dataset in Zhu et
al. [1]. In addition, we created a new dataset with shadow-free ground truth images, which provides a quantitative basis for evaluating
shadow removal. We study the effectiveness of features for both unary and pairwise classification.

Index Terms—Shadow detection, region classification, shadow removal, enhancement.
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1 INTRODUCTION

Shadows, created wherever an object obscures the light
source, are an ever-present aspect of our visual expe-
rience. Shadows can either aid or confound scene inter-
pretation, depending on whether we model the shadows
or ignore them. If we can detect shadows, we can
better localize objects, infer object shape, and determine
where objects contact the ground. Detected shadows
also provide cues for illumination conditions [3] and
scene geometry [4]. But, if we ignore shadows, spurious
edges on the boundaries of shadows and confusion
between albedo and shading can lead to mistakes in
visual processing. For these reasons, shadow detection
has long been considered a crucial component of scene
interpretation (e.g., [5], [6]). Yet despite its importance
and long tradition, shadow detection remains an ex-
tremely challenging problem, particularly from a single
image.

The main difficulty is due to the complex interactions
of geometry, albedo, and illumination. Locally, we cannot
tell if a surface is dark due to shading or albedo, as
illustrated in Figure 1. To determine if a region is in
shadow, we must compare the region to others that have
the same material and orientation. For this reason, most
research focuses on modeling the differences in color,
intensity, and texture of neighboring pixels or regions.

Many approaches are motivated by physical models
of illumination and color [7], [8], [9], [10], [11]. For
example, Finlayson et al. [10] compare edges in the
original RGB image to edges found in an illuminant-
invariant image. This method can work quite well with
high-quality images and calibrated sensors, but often
performs poorly for typical web-quality consumer pho-
tographs [12]. To improve robustness, others have re-
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Fig. 1: What is in shadow? Local region appearance
can be ambiguous, to find shadows, we must compare
surfaces of the same material.

cently taken a more empirical, data-driven approach,
learning to detect shadows based on training images.
In monochromatic images, Zhu et al. [1] classify regions
based on statistics of intensity, gradient, and texture,
computed over local neighborhoods, and refine shadow
labels using a conditional random field (CRF). Lalonde et
al. [12] find shadow boundaries by comparing the color
and texture of neighboring regions and employing a
CRF to encourage boundary continuity. Panagopoulos et
al. [13] jointly infer global illumination and cast shadow
when the coarse 3D geometry is known, using a high
order MRF that has nodes for image pixels and one
node to represent illumination. Recently, Kwatra et al.
[14] proposed an information theoretic based approach
to detect and remove shadows and applied it to aerial
images as an enhanced step for image mapping systems
such as Google Earth.

Our goal is to detect shadows and remove them from
the image. To determine whether a particular region is
shadowed, we compare it to other regions in the image
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Fig. 2: Illustration of our framework. First column: the
original image with shadow, ground truth shadow mask,
ground truth image; Second column, hard shadow map
generated by our detection method and recovered image
using this map alone. Note that there are strong bound-
ary effects in the recovered image. Third column, soft
shadow map computed using soft matting and recovery
result using this map.

that are likely to be of the same material. To start, we
find pairs of regions that are likely to correspond to
the same material and determine whether they have
the same illumination conditions. We incorporate these
pairwise relationships, together with region-based ap-
pearance features, in a shadow/non-shadow graph. The
node potentials in our graph encode region appearance;
a sparse set of edge potentials indicate whether two
regions from the same surface are likely to be of the
same or different illumination. Finally, the regions are
jointly classified as shadow/non-shadow using graph-
cut inference. Like Zhu et al. [1] and Lalonde et al. [12],
we take a data-driven approach, learning our classifiers
from training data, which leads to good performance on
consumer-quality photographs. Unlike others, we explic-
itly model the material and illumination relationships of
pairs of regions, including non-adjacent pairs.

By modeling long-range interactions, we hope to bet-
ter detect soft shadows, which can be difficult to detect
locally. By restricting comparisons to regions with the
same material, we aim to improve robustness in complex
scenes, where material and shadow boundaries may
coincide.

Our shadow detection provides binary pixel labels, but
shadows are not truly binary. Illumination often changes
gradually across shadow boundaries. We also want to es-
timate a soft mask of shadow coefficients, which indicate
the darkness of the shadow, and to recover a shadow-free
image that depicts the scene under uniform illumination.

The most popular approach in shadow removal is
proposed in a series of papers by Finlayson and col-
leagues, where they treat shadow removal as an rein-
tegration problem based on detected shadow edges [15],

[16], [17]. Arbel and Hel-Or [18], [19] use cubic splines
to recover the scalar factor in penumbra regions, and
remove non-uniform shadows on curved and textured
surfaces. Our region-based shadow detection enables us
to pose shadow removal as a matting problem, similarly
to Chuang et al. [20] and Wu et al. [21]. However,
both methods depend on user input of shadow and
non-shadow regions, while we automatically detect and
remove shadows in a unified framework (Figure 2).

Specifically, after detecting shadows, we apply matting
technique of Levin et al. [22], treating shadow pixels
as foreground and non-shadow pixels as background.
Using the recovered shadow coefficients, we calculate
the ratio between direct light and environment light and
generate the recovered image by relighting each pixel
with both direct light and environment light.

To evaluate our shadow detection and removal, we
propose a new dataset with 108 natural scenes, in which
ground truth is determined by taking two photographs
of a scene after manipulating the shadows (either by
blocking the direct light source or by casting a shadow
into the image). To the best of our knowledge, our
dataset is the first to enable quantitative evaluation of
shadow removal on dozens of images. We also evaluate
our shadow detection on Zhu et al.’s dataset of manually
labeled outdoor scenes, comparing favorably to Zhu et
al. [1].

The main contributions of this paper are (1) a new
method for detecting shadows using a relational graph
of paired regions; (2) an automatic shadow removal
procedure derived from lighting models making use of
shadow matting to generate soft boundaries between
shadow and non-shadow areas; (3) quantitative evalua-
tion of shadow detection and removal, with comparison
to existing work; (4) a shadow removal dataset with
shadow-free ground truth images. We believe that more
robust algorithms for detecting and removing shadows
will lead to better recognition and estimates of scene
geometry.

A preliminary version of this work appeared in [2].
This article extends the conference version with eval-
uation of feature effectiveness and alternative matting
strategies, additional experiments on scene-scale images,
and additional discussion of applications and limita-
tions.

2 SHADOW DETECTION

To detect shadows, we must consider the appearance of
the local and surrounding regions. Shadowed regions
tend to be dark, with little texture, but some non-
shadowed regions may have similar characteristics. Sur-
rounding regions that correspond to the same material
can provide much stronger evidence. For example, sup-
pose region si is similar to sj in texture and chromaticity.
If si has similar intensity to sj , then they are probably
under the same illumination and should receive the same
shadow label (either shadow or non-shadow). However,
if si is much darker than sj , then si probably is in
shadow, and sj probably is not.
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We first segment the image using the mean shift algo-
rithm [23]. Then, using a trained classifier, we estimate
the confidence that each region is in shadow. We also
find same illumination pairs and different illumination pairs
of regions, which are confidently predicted to corre-
spond to the same material and have either similar or
different illumination, respectively.

We construct a relational graph using a sparse set
of confident illumination pairs. Finally, we solve for
the shadow labels y = {−1, 1}n (1 for shadow) that
maximize the following objective:

ŷ = arg max
y

∑
i=1

cshadowi yi + α1

∑
{i,j}∈Ediff

cdiffij (yi − yj) (1)

− α2

∑
{i,j}∈Esame

csameij 1(yi 6= yj)

where cshadowi is the single-region classifier confidence
weighted by region area; {i, j} ∈ Ediff are different
illumination pairs; {i, j} ∈ Esame are same illumination
pairs; csameij and cdiffij are the area-weighted confidences
of the pairwise classifiers; α1 and α2 are parameters; and
1(.) is an indicator function.

In the following subsections, we describe the classifiers
for single regions (Section 2.1) and pairs of regions
(Section 2.2) and how we can reformulate our objective
function to solve it efficiently with the graph-cut algo-
rithm (Section 2.3).

2.1 Single Region Classification
When a region becomes shadowed, it becomes darker
and less textured (see [1] for empirical analysis). Thus,
the color and texture of a region can help predict
whether it is in shadow. We represent color with a
histogram in L*a*b space, with 21 bins per channel. We
represent texture with the texton histogram with 128
textons, provided by Martin et al. [24]. We train our
classifier from manually labeled regions using an SVM
with a χ2 kernel (slack parameter C = 1) [25]. We define
cshadowi as the log likelihood output of this classifier times
ai, the pixel area of the i-th region.

2.2 Pair-wise Region Relationship Classification
We cannot determine whether a region is in shadow
by considering only its internal appearance; we must
compare the region to others with the same material.
In particular, we want to find same illumination pairs,
regions that are of the same material and illumination,
and different illumination pairs, regions that are of the
same material but different illumination. Differences in
illumination can be caused by direct light blocked by
other objects, self shading or by a difference in surface
orientation. Comparison between regions with different
materials is uninformative because they have different
reflectance.

We detect shadows using a relational graph, with an
edge connecting each illumination pair. To better handle
occlusion and to link similarly lit regions that are divided
by shadows, we enable edges between regions that are

Fig. 3: Illumination relation graph of two example
images. Green lines indicate same illumination pairs, and
red/white lines mean different illumination pairs, where
white ends are the non-shadow regions and dark ends
are shadows. The width shows the confidence of the pair.

not adjacent in the image. Because most pairs of regions
are not of the same material, our graph is still very
sparse. Examples of such relational graphs are shown in
Figure 3. When regions are classified as having different
illuminations, the shadowed region is specified.

We train classifiers (SVM with RBF kernel; C = 1
and σ = .5) to detect illumination pairs based on com-
parisons of their color and texture histograms, the ratio
of their intensities, their chromatic alignment, and their
distance in the image. These features encode the intuition
that regions of the same reflectance share similar texture
and color distribution when viewed under the same il-
lumination; when viewed under different illuminations,
they tend to have similar texture but differ in color and
intensity. We also take into account the distance between
two regions, which greatly reduces false comparisons
while enabling more flexibility than considering only
adjacent pairs.
χ2 distances between color and texture histograms are

computed as in Section 2.1. We also compute normalized
texton histogram, where we normalize the sum of filter
responses at each pixel to 1. Regions of the same material
will often have similar texture histograms, regardless of
differences in shading. When regions have both similar
color and texture, they are likely to be same illumination
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pairs.
Ratios of RGB average intensity are calculated as

(ρR =
Ravg1

Ravg2
, ρG =

Gavg1

Gavg2
, ρB =

Bavg1

Bavg2
), where Ravg1, for

example, is the average value of the red channel for the
first region. For a shadow/non-shadow pair of the same
material, the non-shadow region has a higher value in
all three channels.

Chromatic alignment: Studies have shown that color
of shadow/non-shadow pairs tend to align in RGB color
space [26]. Simply put, the shadow region should not
look more red or yellow than the non-shadow region,
since direct light usually has a higher color temperature
than the ambient light (e.g. the sun is yellow and the sky
is blue). This ratio is computed as ρR/ρB and ρG/ρB .

Normalized distance in position: Because distant
image regions are less likely to correspond to the same
material, we also add the normalized distance as a fea-
ture, computing it as the Euclidean distance of the region
centers divided by the square root of the geometric mean
of the region areas: D̃(Ri, Rj) =

D(Ri,Rj)√
a
1/2
i a

1/2
j

.

We define csameij as the log likelihood output of the
classifier for same-illumination pairs times √aiaj , the
geometric mean of the region areas. Similarly, cdiffij is
the log likelihood output of the classifier for different-
illumination pairs times √aiaj . Edges are weighted by
region area and classifier score so that larger regions
and those with more confidently predicted relations
have more weight. Note that the edges in Ediff are
directional: they encourage yi to be shadow and yj to be
non-shadow. In the pairwise classification, each pair of
regions is labeled as either different illumination, same
illumination, or different material, whichever is most
confident. Regions of different material pairs are not
directly connected in the graph. If there are many edges,
to make the inference procedure faster, we include top
100 most confident edges, which empirically yield very
similar results.

2.3 Graph-cut Inference

We can apply efficient and optimal graph-cut inference
by reformulating our objective function (Eq. 1) as the
following energy minimization:

ŷ = arg min
y

∑
k

costunaryk (yk)+α2

∑
{i,j}∈Esame

csame
ij 1(yi 6= yj) (2)

with

costunaryk (yk) =− cshadowk yk − α1

∑
{i=k,j}∈Ediff

cdiffij yk (3)

+ α1

∑
{i,j=k}∈Ediff

cdiffij yk.

Because this is regular (binary, with pairwise term en-
couraging affinity), we can solve for ŷ using graph
cuts [27]. In our experiments, α1 and α2 are determined
by cross-validation on the training set. We set α1 = 1
and α2 = 2.

3 SHADOW REMOVAL
Our shadow removal approach is based on a simple
shadow model where lighting consists of single-source
direct light and environment light. We try to identify
how much direct light is occluded for each pixel in the
image and relight the whole image using that informa-
tion. First, we use a matting technique to estimate a
fractional shadow coefficient value. Then, we estimate
the ratio of direct to environmental light in each color
channel, which, together with the shadow coefficient,
enables a shadow-free image to be recovered.

3.1 Shadow model
In our illumination model, there are two types of light
sources: direct light and environment light. Direct light
comes directly from the source (e.g., the sun), while
environment light is from reflections of surrounding
surfaces. Non-shadow areas are lit by both direct light
and environment light, while for shadow areas part or
all of the direct light is occluded. The shadow model can
be represented by the formula below.

Ii = (ki cos θi Ld + Le)Ri (4)

where Ii is a vector representing the value for the i-
th pixel in RGB space. Similarly, both Ld and Le are
vectors of size 3, each representing the intensity of the
direct light and environment light, also measured in
RGB space. Ri is the surface reflectance of that pixel,
also a vector of three dimensions, each corresponding to
one channel. θi is the angle between the direct lighting
direction and the surface norm, and ki is a value between
[0, 1] indicating how much direct light gets to the surface.
Equations 4, 5, 6, 7, 12, 14, 15 for matrix computation
refer to a pointwise computation, while Equations 8, 9
refer to standard matrix computation. When ki = 1, the
pixel is in a non-shadow area, and when ki = 0, the pixel
is in an umbra; otherwise, the area is in a penumbra. For
an shadow-free image, every pixel is lit by both direct
light and environment light and can be expressed as:

Ishadow free
i = (Ld cos θi + Le)Ri (5)

To simplify the model, we assume θ is consistent
across shadow/non-shadow pairs, and use Ld to rep-
resent Ldcosθi. Though this assumption is not always
true, especially for complex scenes, experiment results
show that satisfactory results can be achieved under such
assumptions.

3.2 Shadow Matting
The shadow detection procedure provides us with a
binary shadow mask where each pixel i is assigned a
k̂i value of either 1 or 0. However, in natural scenes, in-
stead of having sharp edges, illumination often changes
gradually along shadow boundaries. Also, automatic
segmentation may result in inaccurate boundaries. Us-
ing detection results as shadow coefficient values in
recovery can result in strong boundary effects. To get
more accurate ki values and get smooth changes between
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non-shadow regions and recovered shadow regions, we
apply a soft matting technique.

Given an image I, matting tries to separate the fore-
ground image F and background image B based on the
following formulation.

Ii = γiFi + (1− γi)Bi (6)

Ii is the RGB value of the i-th pixel of the original image
I, and Fi and Bi are the RGB value of the i-th pixel of
the foreground F and background image B. By rewriting
the shadow formulation given in Equation 4 as:

Ii = ki(LdRi + LeRi) + (1− ki)LeRi (7)

an image with shadow can be seen as the linear combi-
nation of a shadow-free image LdR+LeR and a shadow
image LeR (R is a three dimensional matrix whose i-th
entry equals to Ri), a formulation identical to that of
image matting.

We employ the matting algorithm from [22], minimiz-
ing the following energy function:

E(k) = kTLk+ λ(k− k̂)TD(k− k̂) (8)

where k̂ indicates the estimated shadow label (Section 2),
with k̂i = 0 being shadow areas and k̂i = 1 being non-
shadow. D is a diagonal matrix where D(i, i) = 1 when
the ki for the i-th pixel needs to agree with k̂i and 0
when the ki value is to be predicted by the matting
algorithm. L is the matting Laplacian matrix proposed
in [22], aiming to enforce smoothness over local patches
(in our experiments, a patch size of 3 × 3 is used).

To account for inaccuracies in shadow detection and to
allow smooth transitions across shadow boundaries, we
allow the matting algorithm to calculate the coefficient
values for the majority of the pixels while requiring con-
sistency for the rest of the pixels (we will refer to these
pixels as the constraints). To generate good-quality soft
shadow masks, we would like the constraints to capture
the appearance variance of both the shadow and non-
shadow regions, while allowing the matting algorithm to
generate finer details and provide gradual change from
shadow to non-shadow. To achieve such goal, we draw
inspirations from the user scribbles provided in [22] and
use morphology thinning (we use Matlab’s bwmorph
function call with the parameters ‘thin’ set to 50) to
generate the skeletons for each shadow/non-shadow
regions. Since pixels on boundaries between shadow and
non-shadow areas are often soft shadow regions with a
ki value between 0 and 1, we first apply the erosion
operation (with a 9-by-9 matrix) to the hard mask so the
boundaries pixels will not become part of the constraints.
An example of generated pixel constraints are shown
in Figure 4. We also experimented with other constraint
selection methods; see Sec 5.1 for a detailed discussion.

The optimal k value is the solution to the following
sparse linear system:

(L+ λD)k = λdk̂ (9)

where d is the vector comprising of elements on the diag-
onal of the matrix D. In our experiments, we empirically
set λ to 0.01.

(a)

(b)

(c)

Fig. 4: Generating constraints for shadow matting. (a)
Original input image, (b) Detected hard shadow mask,
(c) Generated constraints for matting. The gray pixels
are unconstrained, the white pixels are constrained non-
shadow pixels and the black pixels are constrained
shadow pixels.

3.3 Ratio Calculation and Pixel Relighting

Based on our shadow model, we can relight each pixel
using the calculated ratio and k value. The new pixel
value is given by:

Ishadow free
i = (Ld + Le)Ri (10)

= (kiLd + Le)Ri
Ld + Le

kiLd + Le
(11)

=
r+ 1

kir+ 1
Ii (12)

where r = Ld

Le
is the ratio between direct light and

environment light and Ii is the i-th pixel in the original
image. For each channel, we recover the pixel value
separately. We now show how to recover r from detected
shadows and matting results.

To calculate the ratio between direct light and environ-
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ment light, our model checks for pairs or regions along
the shadow boundary. We believe these patches are of
the same material and reflectance. We also assume direct
light and environment light is consistent throughout the
image. Based on the lighting model, for two pixels with
the same reflectance, we have:

Ii = (kiLd + Le)Ri (13)
Ij = (kjLd + Le)Rj (14)

with Ri = Rj .
From the above equations, we can arrive at:

r =
Ld

Le
=

Ij − Ii
Iikj − Ijki

(15)

In our implementation, we uniformly sample patches
from both sides of an edge between shadow/non-
shadow pair, and use the average pixel values and k
value in each patch as Ii, Ij , ki and kj . To find the best
ratio value and account for misdetections, we perform
voting in the joint RGB ratio space with a bin size of 0.1,
and the patch size is set to 12 × 12.

4 EXPERIMENTS AND RESULTS
In our experiments, we evaluate both shadow detection
and shadow removal results. For shadow detection, we
evaluate how explicitly modeling the pairwise region re-
lationship affects detection results and how well our de-
tector can generalize cross datasets. For shadow removal,
we evaluate the results quantitatively on our dataset by
comparing the recovered image with the shadow-free
ground truth and show the qualitative results on both
our dataset and the UCF shadow dataset [1].

4.1 Dataset
Our shadow detection and removal methods are evalu-
ated on the UCF shadow dataset [1] and our proposed
new dataset. Zhu et al. [1] made available a set of 245
images they collected themselves and from Internet, with
manually labeled ground truth shadow masks.

Our dataset contains 108 images, each of which con-
sists of a shadow image (input to the detection and
removal algorithm) and a “ground truth” shadow-free
image used to generate ground truth shadow masks. 32
images are chosen as training data, and the other 76 as
testing data. To account for different types of shadows,
such as soft shadows and self shadows, out of the 76
image pairs, 46 image pairs are created by removing
the source of the shadow while the light source remains
the same. In the remaining 30 images, the shadows are
caused by objects in the scene, and the image pair is
created by blocking the light source and leaving the
whole scene in shadow.

We automatically generate the ground truth shadow
mask by thresholding the ratio between the two images
in a pair (Figure 5). This approach is more accurate and
robust than manually annotating shadow regions. To
generate training data for the unary and pairwise SVM,
we manually annotated shadow/non-shadow regions as

well as different illumination pairs, same illumination
pairs and different material pairs. The number of an-
notated pairs in each image varies from 10 to 20 pairs,
depending on the complexity of the scene.

4.2 Shadow Detection Evaluation
Two sets of experiments are carried out for shadow
detection. First, we try to compare the performance
when using only the unary classifier, only the pairwise
classifier and both combined. Second, we conduct cross
dataset evaluation, training on one dataset and testing
on the other. The per pixel accuracy on the testing set
is reported in Table 1 and the qualitative results are
shown in Figure 6. Our quantitative results differ slightly
from the conference version [2] due to the inclusion of
additional features, selection of parameters via cross-
validation, and the replacement of SVM classifier scores
with log probability caliberated scores.

4.2.1 Comparison between unary and pairwise informa-
tion
Using only unary information, our performance on the
UCF dataset is 87.1%, versus a 83.4% achieved by clas-
sifying everything to non-shadow and 88.7% reported
in [1]. Different from our approach which makes use
of color information, [1] conducts shadow detection on
gray scale images. By combining unary information with
pairwise information, we achieve an accuracy of 90.2%.
Note that we are using a simpler set of features and
simpler learning method than [1]. The pairwise illumi-
nation relations are shown to be important, eliminating
24% of the pixel labeling errors on the UCF dataset and
40% of the errors on our own dataset. As shown by the
confusion matrices, this reflects a large increase in the
labeling accuracy of shadowed regions.

The pairwise illumination relations are especially im-
portant on our dataset. Using them on our dataset, the
overall accuracy increases by more than 7%, and 30%
more shadow areas than with the single region classifier.

4.2.2 Feature evaluation
We examine the features used by our classifiers by look-
ing at their influence on unary and pairwise classification
(Table 2). We report Equal Error Rate (EER), the rate at
which the number of false positives equals the number
of false negatives, on these tasks as a summary of
performance. Table. 2a shows EER with different unary
features. Both color and texture cues are helpful and the
classifier works better when combined.

Classification using pairwise features is summarized
in Table 2b. Texture and distances are more useful on
material classification, but less informative of the illumi-
nation. Color distances, ratio of RGB average and color
alignment perform strongly on illumination classifica-
tion task. The confusion matrix of pairwise classification
is shown on Table 2c. The most confusion comes from
different illumination pairs and different material pairs,
since textures can look slightly different when viewed in
shadow, especially the texture due to 3D geometry, e.g.
little bumps on a rough surface.
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(a) (b) (c) (d) (e) (f)

Fig. 5: Generating ground truth shadow masks. First row: using “ground truth” image with shadow source removed.
Second row: using “ground truth” image with light source blocked. Columns: (a) shadow free image, (b) shadow
image, (c) gray-value shadow free image, (d) gray-value shadow image, (e) heat map of difference between gray-
value images, (f) shadow mask after thresholding.

Our dataset (unary) Shadow Non-shadow
Shadow(GT) 0.543 0.457
Non-shadow(GT) 0.089 0.911
Our dataset (unary+pairwise) Shadow Non-shadow
Shadow(GT) 0.716 0.284
Non-shadow(GT) 0.048 0.952
UCF (unary) Shadow Non-shadow
Shadow(GT) 0.366 0.634
Non-shadow(GT) 0.027 0.973
UCF (unary+pairwise) Shadow Non-shadow
Shadow(GT) 0.733 0.267
Non-shadow(GT) 0.063 0.937
UCF (Zhu et al. [1]) Shadow Non-shadow
Shadow(GT) 0.639 0.361
Non-shadow(GT) 0.067 0.934

(a) Detection confusion matrices (b) ROC Curve on UCF dataset

UCF shadow dataset Our dataset
BDT+BCRF [1] 0.887 -

Our method
Unary SVM 0.871 0.817

Pairwise SVM 0.716 0.789
Unary SVM + adjacent Pairwise 0.898 0.881

Unary SVM + Pairwise 0.902 0.891

(c) Shadow detection evaluation (per pixel accuracy)

TABLE 1: (a) Confusion matrices for shadow detection. (b) ROC Curve on UCF dataset. (c) The average per pixel
accuracy on both dataset.

4.2.3 Cross dataset evaluation

The result in Table 3 indicate that our proposed detector
can generalize across datasets. This is especially notable
since the two datasets are very different in nature, with
[1] containing more large scale scenes and hard shadows.
As shown in Table 3, the unary and pairwise classifiers
trained on [1] performs well on both datasets. This is
understandable since their dataset is more diverse and
contains more training images.

4.3 Shadow Removal Evaluation

To evaluate shadow free image recovery, we used as
measurement the root mean square error (RMSE) in
L*a*b color space between the ground truth shadow free
image and the recovered image, which is designed to be
locally perceptually uniform. We evaluate our results on
the whole image as well as shadow and non-shadow
regions separately.

The quantitative evaluation is performed on the subset
of images with ground truth shadow free image (a total
of 46 images). Shadow/non-shadow regions are given by
the ground truth shadow mask introduced in the previ-
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Feature EER
Texton Histogram 0.807

LAB Color Histogram 0.697
Both 0.828

(a) Unary feature evaluation on
UCF dataset

Task Same/Different Material Same/Different Illumination
Feature name With only Everything except With only Everything except

χ2 Texture distance 0.696 0.832 0.735 0.976
χ2 Color distance 0.679 0.832 0.963 0.964

RGB average 0.683 0.799 0.969 0.962
Normalized distance 0.706 0.809 0.490 0.976

Color alignment 0.671 0.827 0.831 0.966
All 0.836 - 0.976 -

(b) Pairwise Feature Evaluation on UCF Dataset

Pairwise Relation Diff. Illu Diff. Illu. (Rev) Same Illu. Diff. Material
Diff. Illu 0.643 0.014 0.003 0.040

Diff. Illu. (Rev) 0.018 0.631 0.004 0.043
Same Illu. 0.024 0.022 0.893 0.051

Diff. Material 0.315 0.333 0.101 0.866

(c) Confusion matrix of pariwise classification on UCF dataset

TABLE 2: (a) Equal Error Rate (EER) of unary features of shadow / non-shadow classification task. (b) EER of
pairwise features on annotated pairs on UCF dataset [1]. The results are reported using 5-fold cross-validation on
the training set. (c) Confusion matrix of pairwise classification, also from cross-validation. “Different illumination
(Rev)” indicates the different illumination pair where the shadow/nonshadow relation is switched.

Training source pixel accuracy on UCF dataset pixel accuracy on our dataset
Unary UCF 0.871 0.755

Unary UCF,Pairwise UCF 0.902 0.815
Unary UCF,Pairwise Ours 0.890 0.863

Unary Ours 0.689 0.817
Unary Ours,Pairwise UCF 0.792 0.870
Unary Ours,Pairwise Ours 0.791 0.898

TABLE 3: Cross dataset tasks, training the detector on one dataset and testing it on the other one.

Region Type Original No matting Automatic matting Matting with Ground Truth Hard Mask
Overall 13.7 8.2 7.4 6.4

Shadow regions 42.0 16.7 13.9 11.8
Non-shadow regions 4.6 5.4 5.4 4.7

TABLE 4: The per pixel RMSE for shadow removal task. First column shows the error when no recovery is
performed; the second column is when detected shadow masks are directly used for recovery and no matting
is applied; the third column is the result of using soft shadow masks generated by matting; the last column shows
the result of using soft shadow masks generated from ground truth mask.

ous section. As shown in Table 4, our shadow removal
procedure based on image matting yields results that are
quantitatively close to ground truth.

We show results overall and individually for shadow
and non-shadow regions (according to the binary ground
truth labels). The “non-shadow” regions may contain
light shadows, so that error between original and ground
truth shadow-free images is not exactly zero for these
regions. To show that matting helps achieve smooth
boundaries, we also compare the recovery results using
only the detected hard mask. We also show results
using soft matte generated from the ground truth hard
mask, which provides a more accurate evaluation of the
recovery algorithm.

The qualitative results for shadow removal are shown
in Figure 6: 6a shows the detection and removal results
on the UCF dataset [1]; 6b demonstrates results on

our dataset. An interesting failure example is shown in
Figure 6c where the darker parts of the checkerboard are
paired with the lighter parts by the pairwise detector and
thus removed in the recovery stage.

5 DISCUSSION

5.1 Generating good soft masks

As mentioned in Section 3.2, the matting algorithm
takes detected hard shadow masks as input and aims at
generating soft shadows (i.e. penumbra) and accounting
for minor errors in the detection step. Whether a good
soft mask can be generated largely depends on the con-
straints (the set of supplied shadow/non-shadow pix-
els). Ideally, the set of constraint pixels should be dense
enough to contain pixels of different colors (i.e. the green
grassland as well as the blue sky) and sparse enough
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to allow smooth transition between shadow and non-
shadow regions. We experimented with three different
strategies: a) remove a thin band around shadow bound-
aries (edges between shadow/non-shadow regions) and
use the rest of the pixels as constraints; b) randomly
sample a subset of the pixels from each connected
shadow/non-shadow region and use them as constraints
(we tried sampling from two distributions, the uniform
distribution and a distribution where the probability is
proportional to the distance to the shadow boundary); c)
choosing pixels from the skeleton of each image region
as constraint. The results for two sample images are
shown in Figure 7. Experiment results show that the
generated soft masks tend to resemble the hard map
when more pixel labels are given as constraints, and will
better reflect the gradient/illumination of the original
image (i.e. image with shadow) when fewer constraints
are imposed. As a result, method (a) works best when the
detection results are accurate and when the input image
contains complicated scenes. However, the generated
soft masks often fail to capture finer-grained shadow,
such as the ones cast by trees. Although method (b) and
(c) often reflect the details in the original image, they
sometimes mistake shading and surface texture near
shadow boundaries for shadows. All our experiment
results are generated using method (c).

5.2 Shadow Detection in Scene-Scale Images
One interesting question is how well our shadow de-
tection algorithm works for general scenes which are
often more complicated and sometimes cluttered with
different objects. To answer that question, we applied
our shadow detector a randomly sampled subset of the
Pascal VOC 2010 [28] trainval set of 100 images. We
used the model trained on the UCF dataset [1], because
their dataset contains more scene scale images and thus
resembles the Pascal dataset more. Selected results are
shown in Figure 8 containing both success and failure
cases.

Based on the generated results, we can see that our
shadow detector is generally good at detecting cast shad-
ows, regardless of the material of the surface. Though
we do not have examples of animals or people in our
training set, the shadow detector succeeds in spotting
the shadows cast on animal skin (first row, last pair)
and human clothes (second row, second pair). However,
as suggested by the failure cases, the detector often mis-
takes darker image regions for shadows. This is probably
due to the bias towards dark shadows in the Zhu dataset
and could be solved by introducing diversity to the
training data. Also, the shadow detector often incorrectly
finds shadows in overcast or diffusely lit scenes.

5.3 Applications
Our algorithm can be used to recover scene illumina-
tion for applications of image manipulation. Karsch et
al. [4] used our shadow detection algorithm [2] to find
confident highlight regions, or light shafts. They first
use the algorithm to determine a soft shadow mask

(a) (b) (c)

(d) (e) (f)

Fig. 9: Application of illumination manipulations. First
row: inserting synthetic objects into legacy photos by
Karsch et al. [4]. (a) The original image; (b) Light shaft
detection and shaft direction estimation; (c) Insertion
of objects with realistic illumination with consistent il-
lumination. Second row: rendering the whole scene in
shadow. (d) The original image; (e) Remove the shadow
all pixels relit with both direct and ambient light; (f)
Remove the direct light component of the scene by relit
all pixels with only ambient light.

of regions that are not illuminated by the light shafts
and then take the inverse. They then use the estimated
scene geometry to recover the direction of the shafts.
This automatically estimated illumination information
provides an alternative to user annotation and is further
used to realistically render synthetic objects in existing
images, as shown in Fig. 9c. The soft shadow matte can
be used for compositing shadows into other images [20].
In addition, with the shadow matte, we can remove
direct light and render the whole scene in shadow, as
in Fig. 9f.

5.4 Limitations and future work

Our algorithm on shadow detection and removal has a
number of restrictions. We cannot differentiate between
shading differences due to surface orientation changes
and due to cast shadows. Also, in our shadow removal
procedure, we are implicitly making the assumption that
all surfaces that contain shadows should be roughly
planar and parallel to each other. However, our detection
method does not need this constraint. Currently our de-
tection method relies on the initial segmentation which
may group soft shadows with non-shadow regions. Also,
the detection algorithm may fail in case of multiple light
sources.

We could further improve detection by incorporating
more sophisticated features, such as the set of unary
region features introduced in [1]. We can also incorporate
geometry and shadow boundary estimates into our de-
tection framework, as in [12]. This could possibly remove
false pairings between regions and provide valuable
hints regarding the source of the shadow. We have made
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available our dataset and code1, which we hope will
facilitate the use of shadow detection and removal in
scene understanding.

5.5 Conclusion
In conclusion, we proposed a novel approach to detect
and remove shadows from a single still image. For
shadow detection, we have shown that pairwise rela-
tionships between regions provides valuable additional
information about the illumination condition of regions,
compared with simple appearance-based models. We
also show that by applying soft matting to the detection
results, the lighting conditions for each pixel in the image
are better reflected, especially for those pixels on the
boundary of shadow areas. Our conclusions are sup-
ported by quantitative experiments on shadow detection
and removal in Tables 1 and 4.
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(a)

(b)

(c)

Fig. 6: (a) Detection and recovery results on UCF dataset [1]. These results show that our detection and recovery
framework also works well in complicated scenes. Notice in (a) that the cast shadows of the trees are correctly
recovered, even though they are complicated and soft. (b) Detection and recovery results on our dataset. (c) Failed
Example. The darker parts of the chessboard are mistakenly detected as shadow and as a result, removed in the
recovery process.
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original image detected hard mask soft mask generated soft mask generated soft mask generated
by method (a) by method (b) by method (c)

Fig. 7: Soft shadow masks generated using different constraints.Left to Right: original image with shadow, hard
shadow mask, soft shadow mask generated using methods (a), (b), (c). For method (b), we sample 10% of the pixels
using the weighted distribution. First row: the case where method (a) works the best while both method (b) and
(c) include the texture of the grass as shadows. Second row: the case where method (b) and (c) captures correct
the detection error(the thin line-shaped shadow) while mistaking part of the ground texture as shadow. In both
the first two rows, method (b) tends to include more texture as shadow. Last row: method (b) and (c) correct the
deteciton error by capturing part of the shadows cast by the fingers, with method (c) capturing more of it.

Fig. 8: Shadow Detection Results on Pascal VOC 2010 trainval set. From top to bottom: generally success-
ful/mixed/failed detection examples. For each image pair, the left one is the input image and the right one is
the detected shadow mask.
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