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Abstract

Occlusion reasoning is a fundamental problem in computer
vision. In this paper, we propose an algorithm to recover the
occlusion boundaries and depth ordering of free-standing
structures in the scene. Rather than viewing the prob-
lem as one of pure image processing, our approach em-
ploys cues from an estimated surface layout and applies
Gestalt grouping principles using a conditional random
field (CRF) model. We propose a hierarchical segmentation
process, based on agglomerative merging, that re-estimates
boundary strength as the segmentation progresses. Our ex-
periments on the Geometric Context dataset validate our
choices for features, our iterative refinement of classifiers,
and our CRF model. In experiments on the Berkeley Seg-
mentation Dataset, PASCAL VOC 2008, and LabelMe, we
also show that the trained algorithm generalizes to other
datasets and can be used as an object boundary predictor
with figure/ground labels.

1. Introduction

One major consequence of projecting the 3D scene onto the
image plane is occlusion — each object blocks the view of
the objects directly behind it. To understand the scene, we
must detect and reason about these occlusions. In Figure 1,
every object is involved in one or more occlusion relation-
ships. These occlusions can make recognition difficult, but
vision systems can compensate with effective occlusion rea-
soning. For example, we are not surprised that we cannot
see the wheels of the truck in the background because they
are occluded by the foliage. But, while occlusions may
complicate recognition, they also provide valuable depth
information. As Magritte playfully observes in his 1965
painting “The Blank Check” (Figure 2), scene interpreta-
tion would become quite difficult if objects did not reliably
occlude each other. Neurological studies further emphasize
the fundamental role of occlusion reasoning in vision. In
macaque brains, Bakin et al. [7] find that occlusion bound-

Figure 1. Given an image, we recover occlusion boundaries (left)
and infer a range of possible depths (right) that are consistent with
the occlusion relationships. In the center, blue lines denote occlu-
sion boundary estimates, the region to left of the arrows is in front,
and black hatch marks show where an object is thought to contact
the ground. On the right, we display the minimum and maximum
depth estimates (red = close, blue = far).

aries and contextual depth information are represented in
the early V2 processing area.

In this paper, we describe an algorithm to recover occlu-
sion boundaries from a single image.1 We take a machine
learning approach. Starting with a large number of initial
regions, we classify the boundaries between neighboring
regions as occlusion or not. We also classify occlusion
boundaries as figure or ground, specifying which region
is in front. Unlikely boundaries are sequentially removed,
and occlusion likelihoods are re-evaluated as the regions be-
come larger. Our goal is to recover the boundaries and depth
ordering of prominent objects in sufficient detail to provide
an accurate sense of relative depth.

The greatest challenge is that objects are typically defined,
not by homogeneity in appearance, but by physical connect-
edness. For example, in Figure 1 the most prominent ob-
jects are the jungle gym, the boy, and the vegetation. Of
these three, only the vegetation can be identified as a sin-
gle region based on local appearance. How do we have any
hope of realizing that the black shorts, white shirt, and small

1This paper offers a more complete understanding of the algorithm first
described in the conference version [27], providing further background,
description, insight, analysis, and evaluation.
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Figure 2. “The Blank Check”, Magritte, 1965. By ignoring rules
of occlusion, Magritte draws our attention to how much we rely
on occlusion reasoning for scene interpretation.

circular region above the shirt actually form a single object?
What is coherent about the blue slides and green portal of
the jungle gym?

We believe that the perception of these structures as indi-
vidual objects arises from a physical interpretation of the
3D scene. Correspondingly, our approach aims to incorpo-
rate physically motivated cues, such as estimates of surface
geometry, relative depth, and alignment, as well as tradi-
tional segmentation features, such as boundary strength and
color differences of regions. Some of these features, such as
region alignment and boundary continuity, are more helpful
with larger regions than the initial small ones. Therefore, as
the regions grow, we apply new classifiers that use features
appropriate to the progress of the segmentation. Finally, be-
cause many combinations of boundary labels are unlikely
or physically implausible, we employ a conditional random
field (CRF) model for global consistency.

In summary, we offer several contributions: (1) A broad
set of cues for occlusion and figure/ground labeling; (2) an
agglomerative segmentation approach, in which boundary
likelihoods are refined using updated predictors; and (3)
a CRF model that leads to more consistent boundary esti-
mates and enforces boundary closure. In experiments on
the Geometric Context dataset, we investigate the impact
of each of these contributions and demonstrate the overall
quality of resulting scene interpretations. We also evalu-
ate the boundary detectors performance on perceptual and
object boundary tasks on three external datasets, providing
some evidence for the general utility of the algorithm.

2. Background

In Perception of the Visual World [19], Gibson declares,
“The elementary impressions of a visual world are those of
surface and edge.” We previously proposed a surface lay-
out [25], that labels pixels according to surface geometry,
such as “support” (e.g., road, grass), “vertical planar” (e.g.,
a building wall), “vertical non-planar porous” (e.g., vegeta-
tion or a mesh), “vertical non-planar solid” (e.g., a person
or a car), and “sky”. This paper complements our surface
layout by inferring the edges of the scene and also builds on
it by incorporating surface estimates as valuable cues.

Early computer vision successes in image understanding,
such as Roberts’ blocks world [59], encouraged interest
in occlusion reasoning as a key component for a complete
scene analysis system. Some success has been achieved by
exploiting multiple images of the scene and apparent mo-
tion at the boundaries. This can be done based on the local
surface near the boundary [73], the difference of the mo-
tion estimates on either sides of the boundary [8, 66, 70], or
the responses of spatio-temporal filters [68, 69]. Although
motion cues are extremely helpful, we are interested in the
problem of occlusion reasoning from a single image, where
motion cues are not available.

Traditionally, researchers have divided single-view occlu-
sion reasoning into subtasks of segmentation and line la-
beling to be solved separately. Modern segmentation algo-
rithms attempt to partition the image according to color or
texture similarity or gestalt cues, but the resulting bound-
aries often do not to correspond to complete objects. Fig-
ure/ground labeling algorithms work well, but only when
given perfect segmentations. Our work stands out as a uni-
fied approach to both find and label occlusion boundaries in
natural scenes from one image.

2.1. Segmentation

In part, our goal is similar to that of traditional image
segmentation — to partition the visual field into mean-
ingful, coherent regions. The major difference is in how
we define what makes a coherent region. Some segmen-
tation methods rely on 2D brightness, color, or texture
cues to group the image pixels into perceptually similar re-
gions [64, 50, 58, 18, 5]. Though this grouping is sometimes
performed based on pre-computed affinities (e.g., [64]),
others advocate a gradual approach, such as the hierarchical
segmentation techniques developed by Ahuja [1] and Arbe-
laez [5, 6], which we follow in our approach.

Other segmentation methods are based on the observation
that many objects are delineated by closed, smooth con-
tours [35]. These approaches typically compute affini-
ties between edge fragments to form a graph from which
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contours are computed. The affinities are based on com-
putational realizations of the Gestalt principles of con-
tinuation, proximity and closure [76, 44, 15, 22]. The
graph can be used directly through graph-based search tech-
niques [15, 30, 3, 33] to find the contours. Alternatively, a
global solution can be reached by finding a dominant com-
ponent in the graph with spectral methods [67, 55, 41, 45].

Because all of these algorithms rely on 2D perceptual
grouping cues, the boundaries of such segmentations could
be due to reflectance, illumination or material discontinu-
ities, as well as occlusions, and resulting regions often do
not correspond to actual objects (see Berkeley Segmen-
tation Dataset (BSDS) [50]). Our physical definition of
boundaries provides a more concrete objective and allows
us to build on the 3D surface estimation described in [25].

In using surface label classifier outputs as features, we
relate to other works on object-based segmentation, such
as [56, 36, 20]. However, our ideal segmentation into ob-
jects and major surfaces is different from a segmentation
into the geometric classes of [25], and we use no object-
specific models.

2.2. Figure/Ground Line Labeling

Much research has gone into assigning occlusion labels to
boundaries, once a good segmentation has been achieved.
In the domain of simple polyhedral objects, Guzman in
1968 proposed an elegant algorithm for assigning occlu-
sion labels to line segments [21]. The approach, fully devel-
oped by Waltz [75] and others [11, 28, 29, 34, 14], defines a
set of possible line labels (convex, concave, and occluding)
and a set of allowed vertex types (T-junctions, L-junctions,
etc). Constraint propagation was used to efficiently rule out
globally-inconsistent geometric interpretations.

This line labeling paradigm has been very influential over
the years, with extensions to handle curved objects (e.g.,
[31, 47]) as well as algebraic [71, 72] and MRF-based [61]
reformulations. Marill [48] observes that optimization of a
global numerical criterion can mimic human 3D interpre-
tation of line drawings, motivating others to formulate the
3D interpretation problem as optimization over an objective
function that favors planarity, symmetry, and other “natu-
ral” properties [38, 43, 65]. More recent approaches also
incorporate topological constraints [10].

However, attempts to transfer these ideas from the world
of line drawings to natural images have been largely un-
successful. The main reason is that detecting boundaries in
real images is in itself an extremely hard problem. Directly
detected T-junctions are not as helpful as they would intu-
itively seem. In fact, recent psychophysics experiments [52]
suggest that T-junctions may not be the cause of occlusion
percepts, but rather their byproduct.

This may partially explain why recent methods to infer fig-
ure/ground labels in natural images [57, 40] tend to work
much better for manually-provided boundaries than auto-
matically detected boundaries. Following similar strate-
gies to the 2.1D work of Nitzberg and Mumford [54], they
approach the problem in two stages: 1) segment the im-
age, 2) assign a figure/ground label to each boundary frag-
ment according to local image evidence and global MRF-
learned constraints. Given a perfect segmentation, their
methods are able to produce impressive results on difficult
natural images (about 80% accuracy, versus 50% chance
accuracy). But without perfect segmentation, the perfor-
mance drops dramatically (to about 70%). These works are
also noteworthy for their investigations into a diverse set of
figure/ground cues and their experimental support of CRF
models. Note that the boundaries that we seek to recover
(major boundaries of free-standing structures) are a sub-
set of the occlusion boundaries considered in these works,
which could include boundaries within objects, such as be-
tween a person’s hair and face.

2.3. Single-View 3D Reconstruction

Our goal of recovering depth relates to recently proposed
methods for single-view 3D reconstruction. Our surface es-
timates [25] can sometimes be used to reconstruct a coarse
3D model of a scene [24]. Saxena et al. [62, 63] train with
range images to estimate depth from the image features di-
rectly. These methods, however, are likely to oversimplify
the 3D model when the scene contains many foreground ob-
jects. By explicitly reasoning about occlusions, we enable
much more accurate and detailed 3D models of cluttered
scenes [26].

3. Algorithm Overview

Our goal is to assign occlusion and figure/ground labels to
boundaries in images. This is a very difficult task, partly
because occlusion is a physical phenomenon, and we have
only a single image. To succeed, we must incorporate a
broad range of cues. Our representation includes: color,
position, and alignment of regions; strength and length of
boundaries; 3D surface orientation estimates; and depth es-
timates. Most of these features are not local: they require
plausible regions to be predictive. The question is how to
progress from pixels to more plausible regions to the final
occlusion boundaries.

Our strategy is to begin with a conservative oversegmenta-
tion into thousands of regions and slowly remove bound-
aries based on predictions from learned models. As the
regions grow, spatial support for computing features im-
proves, and certain features become much more useful. For
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Initial Segmentation Occlusion Cues Soft Boundary Map Next Segmentation

Figure 3. Illustration of our occlusion algorithm. Beginning with an initial oversegmentation into thousands of regions, we gradually
progress towards our final solution, iteratively computing cues over boundaries and regions in the current segmentation, estimating a soft
boundary map by performing inference over our CRF model, and using the boundary map to create a new segmentation by agglomerative
region merging until the weakest boundary is above threshold. At the end of this process, we achieve the result shown in Figure 1.

this reason, we refine boundary predictions as the segmen-
tation progresses, drawing from a set of classifiers that are
trained for different stages of the segmentation.

This suggests an iterative procedure, which is illustrated in
Figure 3. Each iteration consists of three steps based on
the image and the current segmentation: 1) compute cues;
2) assign confidences to boundaries; and 3) remove weak
boundaries, forming larger regions for the next segmenta-
tion.

The initial boundaries are created using watershed segmen-
tation with the soft boundary map provided by the pB al-
gorithm of Martin et al. [49] (without non-maxima sup-
pression, as suggested by [5]). This will typically produce
thousands of regions, preserving nearly all true boundaries.
Using ground truth labels on these boundaries, we train
classifiers that predict occlusion and figure/ground labels
given the features described in Section 4. One classifier
predicts the label of each boundary independently; another
makes predictions given the labels of neighboring bound-
aries. These classifiers are incorporated into a CRF model,
described in Section 5, that encourages continuity and en-
forces closure, providing a more consistent and plausible
solution. The CRF produces a confidence of occlusion and
of the figure/ground label for each boundary. Weak bound-
aries, according the occlusion confidence, are sequentially
removed, as detailed in Section 6, until the weakest bound-
ary has confidence greater than some threshold. Then, new
classifiers are trained that can make appropriate use of the
increased spatial support, and the merging process contin-
ues.

4. Cues for Occlusion Reasoning

We want to train classifiers that predict occlusion and fig-
ure/ground labels for hypothesized boundary fragments.
Below, we describe a variety of cues (i.e., features) that rep-
resent statistics over the boundary or the regions on either

Figure 4. Illustration of regions, boundaries, and junctions.
Beginning with an oversegmentation, we attempt to determine
whether each boundary is an occlusion boundary and, if so, which
region is in front. We classify the boundary based on 2D and 3D
cues computed over the boundary and neighboring regions. In a
conditional random field (CRF) model, we encourage continuity
and enforce closure by defining appropriate energy terms over the
junctions.

side (Figure 4). Our occlusion cues are listed in Table 1 and
described below. Although each classifier uses all of these
features, some, such as similarity of region colors, are more
useful for the occlusion vs. non-occlusion prediction, while
others, such as signed difference of surface confidences, are
more helpful for figure/ground labeling. The effectiveness
of these features is experimentally analyzed in Section 8.

4.1. Boundary Cues

Long, smooth boundaries with strong color or texture gra-
dients are more likely to be occlusion boundaries than
short boundaries with weak gradients. To represent bound-
ary strength (B1), we take the mean Pb [49] (probabil-
ity of boundary) value along the boundary pixels, with-
out applying non-maxima suppression. We also provide
a measure of surroundedness (B2): the ratio of bound-
ary length to the perimeter of the smaller region (e.g.,

length(e12)

length(e12)+length(e23)+length(e24)
in Figure 10). We mea-

sure smoothness (B3) as the ratio of boundary length to L1
distance between endpoints and orientation (B4) as the dif-
ference between the boundary angle (the angle between the
endpoints) and the angle of adjacent boundaries (B5). Fi-
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Occlusion Cue Descriptions Num
Boundary 7
B1. Strength: average Pb value 1
B2. Length: length / (perimeter of smaller side) 1
B3. Smoothness: length / (L1 endpoint distance) 1
B4. Orientation: directed orientation 1
B5. Continuity: minimum diff angle at each junction 2
B6. Long-Range: number of chained boundaries 1
Region 18
R1. Color: distance in L*a*b* space 1
R2. Color: difference of L*a*b* histogram entropy 1
R3. Area: area of region on each side 2
R4. Position: differences of bounding box coordinates 10
R5. Alignment: extent overlap (x,y,overall,at boundary) 4
3D Cues 34
S1. GeomContext: average confidence, each side 10
S2. GeomContext: signed difference of S1 between sides 5
S3. GeomContext: sum absolute S2 1
S4. GeomContext: most likely main class, both sides 1
S5. GeomTJuncts: two kinds for each junction 4
S6. GeomTJuncts: if both junctions are GeomTJuncts 2
S7. Depth: three estimates (log scale), each side 6
S8. Depth: diffs of S7, abs diff of first estimate 4
S9. Depth: diff of min overestimate, max underestimage 1

Table 1. Cues for occlusion labeling. The “Num” column gives
the number of variables in each set. We determine which side of
a boundary is likely to occlude (neither, left, right) based on esti-
mates of 3D surfaces, properties of the boundary, and properties
of the regions on either side of the boundary. Some information
(such as S1) is represented several ways to facilitate learning and
classification.

nally, we apply a simple chaining algorithm to link approx-
imately (within 45 degrees) continuous boundaries together
(B6).

4.2. Region Cues

It is also helpful to consider features of the regions that are
separated by the boundary. Adjacent regions that have sim-
ilar colors or are well-aligned are more likely to correspond
to the same object. Position can be a valuable cue for fig-
ure/ground labeling, as the lower region is more likely to
be foreground. We represent color in L*a*b* space, and
we use as cues the difference of mean color (R1 in Ta-
ble 1) and the difference between the entropy of histograms
(8x8x8 bins) of the individual regions versus the regions
combined (R2). We also represent the area (R3), position
and differences of the bounding box coordinates (R4), and
the alignment of the regions (R5). The positional features
are illustrated and detailed in Figure 5.

4.3. Surface Layout Cues

The surface estimates from [25] are highly predictive of oc-
clusion boundaries and figure/ground labels. For example, a
woman standing in front of a building is a solid, non-planar
surface occluding a planar horizontal surface (the ground)
and a planar vertical surface (the building wall). We can
take advantage of our work in [25] to recover surface in-
formation, which we represent as the average confidence
(S1-S4) for each geometric class (horizontal support, ver-
tical planar, vertical solid non-planar, vertical porous, and
sky) over each region. These are illustrated in Figure 6.

T-junctions, which occur when one boundary ends on an-
other boundary, have long been used as evidence for an oc-
clusion event [21]. Such junctions, however, are only re-
liable indicators when they occur at the boundaries of sur-
faces, not within them. As a cue, we record the event of
geometric T-junctions (S5-S6) by finding where a bound-
ary chain (B6) transitions from a ground-vertical or sky-
vertical to a vertical-vertical boundary, according to the
most likely surface labels (S4). In Figure 10, the junctions
(e12, e23, e13) and (e23, e24, e13) exemplify the two types
of geometric T-junctions.

4.4. Depth-based Cues

Under strong assumptions, we can estimate the depth or
depth range (Figure 7) of regions using surface estimates
and occlusion boundaries, if we can see where they contact
the ground. Although coarse and defined up to a scale, these
estimates can provide a good qualitative sense of depth (Fig-
ure 15) and convincing 3D reconstructions [26]. These es-
timates can also be used as features, incorporating informa-
tion from non-neighboring regions and potentially encod-
ing, for instance, that small pixel misalignments are more
significant for objects that are further away. However, we
forewarn that our experiments do not confirm the usefulness
of these depth cues.

Under assumptions of no camera roll, unit aspect ratio, zero
skew, and an approximately level camera and ground, the
depth of a point at ground level at pixel row vi is given by
z = fyc

vi−v0 , where f is the camera focal length, yc is the
camera height, and v0 is the horizon position. Therefore,
given the horizon, the ground-vertical-sky surface labels,
and ground-vertical contact points, we can approximate the
depth of an image region, up to the scale fyc. The log ra-
tio depth of two such ground points is log(z2)− log(z1) =
− log(v2 − v0) + log(v1 − v0). Note that, while these esti-
mates are suspect due to strong assumptions, the algorithm
need not rely on them.

Given the most likely surface labels, we estimate the hori-
zon to be below the lowest sky label, above the highest
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Figure 5. Illustration of region position features. The regions in (a), being better aligned, are more likely to be part of the same object
than the regions in (b). If the boundaries are due to occlusion, then regions 1 and 3 likely correspond to objects behind those of regions 2
and 4, respectively, because further objects tend to appear higher in the image. On the right, the specific features for position and alignment
are detailed, with the bounding box of each region i given by (li, ti) for the left-top and (ri, bi) for the right-bottom. The term wij denotes
the horizontal length of the boundary. Note that r is used for right coordinate of the bounding box here but denotes region label elsewhere.
We omit details of a fourth alignment feature because it is difficult to concisely describe and not found to be helpful in experiments.
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Figure 6. Illustration of surface layout features. The method in [25] provides pixel confidences for “support”, “vertical planar”, “vertical
non-planar porous”, “vertical non-planar solid”, and “sky”. These confidences are shown in center, with brighter pixels as more confident
in the given label. On the right, the intensity of each boundary pixel is equal to the sum absolute difference of the surface confidences of
the regions that it separates. As can be seen, this provides a useful feature for classifying occlusion boundaries. The signed difference of
the confidences is very useful for figure/ground classification. Often, the figure/ground label will be very obvious where an object region
is adjacent to a ground or sky region, and inference on our CRF model helps to propagate the label into less obvious boundaries.

ground pixel, and as close to the image center as possible.
We estimate the ground-vertical contact points using a deci-
sion tree classifier based on the shape of the perimeter of a
region, as described by Lalonde et al. [37]. For each region,
we provide three estimates of depth (S7-S9) corresponding
to three guesses of the ground-contact point. The first is es-
timated by computing the closest ground pixel directly be-
low the object, giving a trivial underestimate of depth. The
second assigns the depth of objects without visible ground-
contact points as the maximum depth of the objects that oc-
clude it, giving a more plausible underestimate of depth.
The third assigns such objects the minimum depth of ob-
jects that it occludes, giving an overestimate of depth. The
depth range images displayed in our results depict the sec-
ond and third of these estimates. These estimates are pro-
duced by first estimating depth for regions that contact the
ground and then iteratively estimating the depth range for
the remaining regions based on its occlusion relationships.

5. CRF Model for Occlusion Reasoning

Once we have computed cues over the boundaries and re-
gions from the current segmentation, the next step is to es-
timate the likelihoods of the boundary labels (“0” for no
boundary or the region number of the occluding side) and

of the surface labels (into “support”, “planar”, “porous”,
“solid”, and “sky”). Our conditional random field (CRF)
model enables joint inference over both boundary and sur-
face labels, modeling boundary strength and continuity and
enforcing closure and surface/boundary consistency. Fig-
ure 8 illustrates how a CRF can improve global consistency
of the boundary labeling. A poor independent boundary
prediction can often be improved by considering the other
boundary labels. We note that the boundary terms have
much more impact on boundary labeling performance.

We represent the model with a factor graph, in which the
probability of the boundaries and surfaces is given by

P(labels|data) = 1

Z

Nj∏
j

φj

Ne∏
e

γe (1)

where in shorthand notation we denote junction factor φj
and surface factor γe, with Nj junctions and Ne boundaries
in the graph and partition function Z. Boundaries are di-
rected because they have assigned figure/ground labels and
can be denoted with an arrow. By our convention, the region
to the left of the arrow is in front. It is convenient to speak
of boundaries as incoming (arrow points towards junction)
or outgoing (arrow points away from junction).

The junction factors encode the likelihood of the label of
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Figure 7. Illustration of depth range. In the left image, left side of the arrow is in front, so the depth ordering from front to back, according
to the figure/ground labels is red box, yellow box, gray box, ground, and sky. Under simplifying assumptions, we can estimate the relative
depth of the red and gray boxes because we can see where they touch the ground plane (shown by hatch marks). We know that the yellow
box is no closer than the red box and no further than the gray box, providing a depth range.

Before CRF Inference After CRF Inference

Figure 8. Example of how the CRF model helps. On the left, we
show the occlusion boundary confidence from independent bound-
ary classifications. On the right, we show the confidence after
inference with our CRF. Note, in the magnified boundary, how
independent predictions can be physically implausible (two occlu-
sion boundaries with nothing connecting them). Such small er-
rors could lead to an unstable hierarchical segmentation, but infer-
ence with the CRF model is often able to correct them. The post-
inference predictions are more consistent and, on average, more
accurate.

each boundary according to the data, conditioned on its pre-
ceding boundary if there is one. They also enforce closure
and continuity. Though there are 27 possible labelings of
boundary triplets, there are only five valid types of three-
junctions up to a permutation. At a scene T-junction, there
will be three occlusion boundaries, with at least one outgo-
ing and at least one incoming. Along the edge of an ob-
ject, there will be one incoming and one outgoing occlu-
sion boundary. Within an object, there will be no occlusion
boundary. Other labels are not physically plausible (i.e.,
other cases imply accidental alignment of object boundaries
or interweaving surfaces). Four-junctions are handled in a
similar manner. Because edges are defined along cracks in
the pixel grid, junctions with more than four edges are not
possible.

In the CRF, a very small probability is assigned to in-
valid junctions. Otherwise, the junction likelihood term is
given by the product of the label likelihood of each outgo-
ing boundary, given any corresponding incoming boundary,
and the square root of the likelihood of each non-occlusion
boundary. This is shown in Figure 9 for three-junctions,

with boundary label between regions i and j denoted by
eij . The square root is used to avoid double-counting, since
each boundary connects two junctions.

In Figure 10, we illustrate the junction factors with an ex-
ample of a simple scene. Note that the factor graph, when
given a valid labeling, can be decomposed into one like-
lihood term per boundary. This nice property allows us to
learn boundary likelihoods using standard machine learning
techniques, such as boosted decision trees, without worry-
ing about CRF interactions (see Section 7 for implemen-
tation details). The reasoning over junctions and the defini-
tion of valid junctions is reminiscent of the much earlier line
labeling work of Waltz [75]. But while Waltz used shading
to resolve ambiguities in polyhedral scenes, we learn region
and boundary cues to label occlusions in general scenes.

The surface factors encode the likelihood of the surface la-
bel of each region according to the data and enforce consis-
tency between the surface labels and the boundary labels.
We set penalty term (ρinconsistent = exp(−1)) for the lack
of a boundary between different geometric classes, for the
ground region or sky occluding a vertical region, and for
sky occluding the ground. We impose a weaker penalty
term (ρfloating = exp(−0.25)) for a vertical region be-
ing entirely surrounded by another vertical region or by sky
(which would imply that the former is floating). Examples
of the surface factors are shown in Figure 11. The unary re-
gion label likelihood P(ri|data) is computed as the mean
surface confidence over the region (S1 in Table 1). To write
one surface factor term per boundary, the unary region terms
are set to P(ri|data)

1
ni , where ni is the number of bound-

aries surrounding region i. Alternatively, the factor graph
could be set up so that each region has a unary factor equal
to P(ri|data), and the factor of each boundary is used only
to impose the “inconsistency” or “floating” penalty.

Even approximate max-product inference over our model is
intractable due to the high closure penalties, but the Hes-
kes et al. [23] Kikuchi free energy-based sum-product al-
gorithm, combined with the mean field approximation of
raising factors to the 1/T (T = 0.5 in our experiments),
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Figure 9. Illustration of five valid junctions and corresponding likelihoods. The label of the boundary between regions i and j is
denoted as eij and assigned to 0 (no occlusion), i (region i occludes), or j (region j occludes). By our convention the foreground region
(shaded) is to the left of the directed edge. Dotted lines indicate non-occlusion boundaries.
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Figure 10. Illustrating example of a simple scene with junction CRF factors under two valid interpretations. Left, we show the scene
and boundaries to label. Center, we show a labeling that implies: 1 and 3 are the same surface; 1+3 is in front of 4; and 2 is in front of 1+3.
Right, we show a labeling that implies a front-to-back depth ordering of regions 2, 3, 4, 1. See Figure 9 for explanation of notation. Here,
the data term is omitted to simplify presentation.

as suggested by Yuille [77] efficiently provides “soft-max”
likelihood estimates.

6. Segmentation from Boundary Likelihoods

Given a soft boundary map, we can compute a hierarchi-
cal segmentation and threshold it to get the initial seg-
mentation for the next iteration (see Figure 12). The hi-
erarchical segmentation is computed by iteratively merg-
ing regions with the minimum boundary strength until no
boundary is weaker than the given threshold. We define the
boundary strength between two regions as the maximum
of 1) the value of the strongest boundary between them
(1 − P(e12 = 0|data)); and 2) a re-estimate of bound-
ary strength computed when new regions are formed. The
first of these is the value from our CRF inference. The sec-
ond is computed by estimating the boundary likelihood of
newly formed regions based on quickly computable cues
(S1-S4, C1, R1-R5 in Table 1). By incorporating this sec-
ond estimate, we better handle cases in which two distant
regions are clearly different objects but are separated by a
set of weak boundaries (as in the case of a slowly vary-

Regions DendrogramBoundary Map

1 2

3

0.5

0.9
λ

1 2 3

0.5

0.9

Figure 12. Illustration of hierarchical segmentation from soft
boundary map. Here, for hierarchy threshold λ > 0.5 the two bot-
tom regions are merged, and for λ > 0.9, all regions are merged.

ing gradient). Our definition of total boundary strength as
the maximum of the two estimates ensures that our merging
metric is an ultrametric [5], guaranteeing a true hierarchy.
We threshold the hierarchy to provide our next initial seg-
mentation.

7. Implementation Details

We train and test our method on our Geometric Context
dataset [25], consisting of a wide variety of scenes including
beaches, fields, forests, hills, suburbs, and urban streets.
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Figure 11. Illustrating example of a simple scene with surface CRF factors for two interpretations. A factor is defined on each boundary
to penalize inconsistencies and incorporate region label likelihood. Note that if the individually most likely region labels are already
consistent with the boundary labeling, these factors will have no effect on boundaries and will assign regions to the most likely labels.

7.1. Assigning Ground Truth

To assign ground truth, we segment each image into thou-
sands of regions, using watershed with pB soft boundaries,
and manually group them into object regions, which could
be discontinuous due to occlusion. We then assign a depth
ordering of objects and use it to assign figure/ground labels.
We assigned ground truth to 100 images: 50 for training
and 50 for testing. For training, we use the 50 images that
were originally used to train the segmentation in the sur-
face estimation algorithm. For quantitative evaluation, we
use 50 of the test images from the dataset (specifically, the
images from the first fold of the five-fold cross-validation).
Examples of the ground truth can be seen in Figure 14. A
medium-complexity image will typically contain 10-15 ob-
jects according to our ground truth labels.

7.2. Training

After defining the ground truth over our dataset, we train
using the algorithm outlined in Figure 13. We estimate
the unary (P(e1|data)) and conditional (P(e1|e2,data))
boundary classifiers using a logistic regression version of
Adaboost [12], with 20 16-node decision trees as weak
learners. This classification method provides good feature
selection and probabilistic outputs. The cues used in the
unary classifier are described in Section 4. For pairwise
cues, we simply concatenate the unary cues for both bound-
aries and add cues for continuity (relative angle of the two
adjacent boundaries) and boundary length (in pixels). Since
cues such as color histograms become more useful in the
later iterations of our algorithm (with larger regions), we
train separate classifiers for the initial segmentations (about
4,400 regions per image, on average) and for the segmenta-
tions obtained after the first and second iterations (300 and
100 regions per image, on average, respectively).

In the first two iterations, we set the threshold for the hier-

archical segmentation to a conservative value correspond-
ing to an “acceptable” level of pixel error in the training
set (1.5%, 2%, respectively), as is typically done in cascade
algorithms such as Viola and Jones object detection [74].
The threshold values are 0.105 and 0.25. For instance, in
the first iteration, we merge two regions if we are less than
10.5% confident that there is an occlusion boundary be-
tween them. The threshold for the remaining iterations can
be set to reflect the desired trade-off between the number of
regions and how well the true object regions are preserved.
In our experiments, we set this threshold to 0.6. To train the
boundary classifiers after the first iteration, we transfer the
ground truth from the initial oversegmentations to the cur-
rent segmentations by automatically labeling each region as
the object that occupies the largest percentage of its pixels.

In our experiments, we set the surface factor unary term
by combining, in a linear logistic model, two likelihood es-
timates: 1) the multiple segmentation estimate from [25];
and 2) an estimate using the same cues as (1) but using the
current segmentation from our occlusion algorithm. The
logistic weights (1.34, 0.16) were learned to maximize like-
lihood of the training surface labels.

7.3. Inference

To evaluate a new image, we perform the algorithm de-
scribed in the previous sections, initializing with an over-
segmentation, and iteratively progressing toward our final
solution. In each iteration, we compute cues over the cur-
rent regions, compute boundary likelihoods in a CRF model
based on those cues, and create a new segmentation by
merging regions based on the boundary likelihoods. In
the first iteration, we restrict our CRF model to the unary
boundary likelihoods, since boundary and surface reason-
ing over the initial segmentation is ineffective and compu-
tationally expensive. In the second iteration, we expand our
model to include the junction factor terms. In each addi-
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TRAINING

Input:
• Training images
• Initial segmentations {s0} (from watershed/pB)
• Ground truth object regions {ŝ0}
• Ground truth boundary labels {ê0} (NoEdge/Side1Occludes/Side2Occludes)

For iteration t = 1..3:
1. For each image k: compute cues for segmentation sk

t−1 (Section 4)
2. Train boosted decision tree boundary classifiers to get Pt(ei|data), Pt(ei|ej = on,data)
3. For each image: compute soft boundary map by CRF inference (Section 5)
4. For each image: compute hierarchical segmentation (Section 6)
5. Set hierarchy threshold by training error
6. For each image k: get next segmentation sk

t by thresholding hierarchy
7. Update ground truth {ŝt}, {êt} as best fit from {ŝ0}, {ê0} given {st}

Output:
• Boundary classifiers for each iteration
• Thresholds for hierarchical segmentations for each iteration

Figure 13. Procedure for training our occlusion recovery algorithm. The main idea is that, because we have less information (smaller
regions) at the start of the segmentation process, we should train and apply new classifiers as the segmentation progresses. This idea is
validated in our experiments, which show that some features are helpful for only the later stages of segmentation. Though procedurally
iterative, the algorithm may be viewed as updating classifiers during a single agglomerative merging process.

tional iteration, we perform inference over the full model.
The algorithm terminates when no regions are merged in an
iteration (typically after 4 or 5 iterations, in total). In our
Matlab implementation, our algorithm takes about 460 sec-
onds for a 600x800 image, running on a single thread of a
64-bit Intel core i7 2.93GHz, including about 215 seconds
for Pb [49] without non-maximum suppression, 10 seconds
for our surface estimation algorithm, and 235 seconds for
the occlusion algorithm. By comparison, the full Pb al-
gorithm takes about 660 seconds, and the Global Pb algo-
rithm [46] takes 480 seconds per image on the same proces-
sor for the same images.

8. Experiments

Using the Geometric Context dataset, we quantitatively
evaluate our method in terms of occlusion boundary clas-
sification and figure/ground classification on 50 test images
(Section 8.1). We also provide several qualitative results
and analyze the impact of our features, of retraining classi-
fiers during agglomerative segmentation, and of the CRF
model (Section 8.2). Finally, we compare our algorithm
to Pb [51] and Global Pb [46] on several external datasets
(Section 8.3) to evaluate our algorithm’s usefulness in per-
ceptual and object boundary prediction.

8.1. Results in Geometric Context Dataset

We provide several examples of results from the Geometric
Context Dataset in Figure 14. For quantitative analysis of

average precision in boundary prediction and accuracy of
figure/ground labels, see Table 2. As shown in Figure 15,
we can often give a reasonable sense of relative depth by
combining simple scene models with predicted boundaries,
figure/ground labels, and surface layout labels. In an earlier
conference paper [27], we provide further analysis of seg-
mentation accuracy and show that segmentations compare
favorably to normalized cuts [13] or using the surface lay-
out labels as a segmentation. In other work [26], we show
that the occlusion boundaries are helpful for single-view 3D
reconstruction. To avoid overwhelming the reader with ex-
perimental results, we suppress the details in this article.

8.2. Analysis of Features and Approach

We analyze several major design decisions of our approach:
the choice of features, the retraining during agglomerative
segmentation, and the CRF for imposing non-local priors
and constraints. For these experiments, we use the Geomet-
ric Context dataset.

Feature Importance. We use a comprehensive set of fea-
tures describing: the length, strength, and continuity of
boundaries; area, position, and color similarity of neighbor-
ing regions; predicted surface layout confidences; and depth
and t-junction cues based on simplified scene models. We
would like to know how these features impact performance.
To get a rough sense, we evaluated performance of bound-
ary and figure/ground classifiers using different subsets of
features, as shown in Table 2. The boundary classifier la-
bels a potential boundary as occlusion or not, while the fig-
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Ground Truth Result Ground Truth Result

Figure 14. Qualitative test results on the Geometric Context dataset. Occlusion boundaries are shown in blue and white; the region on
the left side of the arrow is thought to be in front. The algorithm tends to do well in separating objects from ground and sky. When nearby
objects have similar color or depth, the algorithm has difficulty separating them. Decapitation of humans is also common (row 4, left),
encouraged by continuity through the shoulders and color differences of skin and garments. These difficulties and successes can be partly
explained as a heavy reliance on surface layout features, though we show in earlier work [27] that segmentation purely based on surface
layout performs relatively poorly. Boundaries for detectable objects can be improved with simple mechanisms [26].

ure/ground classifier estimates which side occludes, if any.
Because we retrain classifiers at different levels of the ag-
glomerative segmentation, we show results for each clas-
sifier. We can see that for both classifiers, the region and
boundary features lead to a better classifier than using only
Pb estimates [51], and including features based on surface

layout predictions gives a substantial improvement. How-
ever, the remaining “geometric T-junction” and depth-based
cues do not seem to help.

In Figure 16, we also describe a more detailed analysis us-
ing L1 regularized logistic regression [32] on standardized
(zero mean, unit norm) features. This is a linear classi-
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iter 1 iter 2 iter 3
Pb only 0.332 0.494 0.611
Region+Boundary Cues 0.410 0.603 0.734
R+B+GeomContext Cues 0.577 0.723 0.780
All Cues 0.584 0.702 0.779
All Cues, No Retrain — 0.698 0.759
All Cues with CRF — 0.723 0.782

iter 1 iter 2 iter 3
Region+Boundary Cues 58.7% 65.4% 68.2%
R+B+GeomContext Cues 73.2% 77.1% 77.0%
All Cues 71.7% 75.6% 77.1%
All Cues, No Retrain — 71.9% 74.0%
All Cues with CRF — 77.3% 79.9%

(a) Occlusion/Non-occlusion Average Precision (b) Figure/Ground Accuracy
Table 2. Quantitative test results on the Geometric Context dataset. Left: Average precision of boundary occlusion/non-occlusion
classification, computed for each image and averaged over all test images. Right: figure/ground labeling accuracy, averaged over all
boundary pixels. Shown are results using Pb [49], boundary/region cues only (R1-R5,B1-B6 in Figure 1), with additional surface layout
cues (S1-S4), with all cues and retraining after each iteration, with all cues and no retraining, and using all cues and retraining after
performing inference with our CRF model (only unary likelihoods were used in the first iteration). Using the surface layout cues, retraining,
and the CRF model all provide significant gains, while the more complex junction and depth cues (S5-S9) do not help and sometimes
degrade performance, possibly due to overfitting. Results are not directly comparable across iterations because there are fewer boundaries
in each successive iteration.

Figure 15. For each image, we show the recovered object boundaries with arrows indicating the foreground object (left side) and black
straight lines indicating ground contact points. To the right of each image, we show an estimated depth range, with the minimum depth
on top, and the maximum depth underneath. Depth ranges are computed based on the object boundaries, the surface geometry, the ground
contact points, and the depth ordering.

fier that can be used for feature selection [53] or learning
Markov network structures [39]. Because the regulariza-
tion encourages sparsity, important features are assigned
weights with high magnitudes, and features that add little
predictive power are assigned zero weight. As a measure of
feature importance, we report weight magnitudes that are
normalized to sum to one. Overall, we can see that different
features are important for boundary classification and fig-
ure/ground classification, but nearly all features carry some
weight. Some of these features, such as boundary length
and continuity and region position and alignment are not

found to be important until later stages, when the regions are
larger. For boundary classification, the most important fea-
tures are the absolute difference of surface confidences, the
entropy-based region color feature, Pb confidence, bound-
ary length, and x-alignment of region bounding boxes. For
figure/ground classification, the most important features are
those based on differences in surface confidences and rela-
tive position of neighboring regions.

Retraining Classifiers. Though hierarchical segmentation
is a well-worn technique, our approach adds a twist by re-
training classifiers each time the merging cost reaches a cer-
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Most Important Boundary Features
Iter1  Iter2  Iter3

S3 (GC Abs Diff)   42%    32%   24%
R2 (Color Ent.)      15%   10%   10%
B1 (Pb) 11%     6%     3%
B2 (Length) 0%     6%    11%
R5 (Bbox XOv)         4%     7%      6%

Most Important Figure/Ground Features
Iter1  Iter2  Iter3

S2 (GC Sky Diff)    28%    19%   15%
S2 (GC Sol Diff)     17%    17%   17%
S2 (GC Gnd Diff)   14%      9%   10%
S1 (GC Sky Conf)   15%     9%     9%
R4 (Bottom Diff)     1%      7%    7%

Boundary Classification Figure/Ground Classification

Figure 16. Feature importance, measured by percentage of weight magnitude assigned to each feature in a L1-regularized linear logistic
regression classifier. Different features are important for boundary classification (occlusion boundary vs. no boundary) and figure/ground
classification. Some features are important only in later stages, when larger regions are available. Overall, features based on surface layout
have the most influence, but nearly all features have some weight. On the right, we list the individual features with the highest magnitude
weight, given as a percentage of the total magnitude of the weight vector.

tain threshold. This results in three sets of classifiers. In Ta-
ble 2, we show that retraining gives an moderate improve-
ment of between 0.02 and 0.04 AP, likely because some fea-
tures are only effective for larger, more confident regions, as
shown in Figure 16. These experiments provide some jus-
tification for adjusting classifiers as the segmentation pro-
ceeds.

CRF. Our CRF model encodes continuity and imposes a
penalty for physically implausible combinations of occlu-
sion and surface labels. The inference is approximate and
computationally costly, and we use it only in the later stages
of segmentation. In Table 2, we show that the CRF model
does give a modest to moderate gain in average precision of
boundary prediction.

8.3. Predicting Perceptual and Object Boundaries

Often, boundary predictors are used, not as a result, but as
a feature for object recognition or segmentation. In these
experiments, we compare our occlusion-based boundary
predictor to the well-regarded boundary predictors Pb and
GlobalPb, which are trained on 200 images from the Berke-
ley Segmentation Dataset (BSDS), annotated with percep-
tual boundaries. Without retraining either algorithm, we
compare on three datasets: BSDS test set, LabelMe [60],
and the PASCAL VOC 2008 segmentation set [16]. On the
perceptual boundaries task (BSDS), the Global Pb classifier
performs best, while on the object boundaries tasks (La-
belMe and PASCAL VOC), our occlusion algorithm per-
forms best. Further, our occlusion algorithm provides fig-
ure/ground confidences, which could be useful for object
recognition.

Boundary Prediction. Until now, the final output of our
occlusion algorithm has been one segmentation with fig-
ure/ground labels over the boundaries. To use boundary pre-
diction as a feature, we would like confidences for each pos-
sible boundary pixel, not just those that survive to reach the
final segmentation. To get a per-pixel probability of bound-
ary map, we compute the mean of the soft maps produced in
the first, second, third, and final iterations. This has the de-
sired effect of down-weighting boundaries that are removed
in early stages, without assigning them a zero likelihood.
We also experimented with logistic regression weightings,
but, overall, it performed similarly to the simple averaging
method. To estimate figure/ground likelihood, we compute
an average of the figure/ground predictions from each itera-
tion, weighted by the per-iteration occlusion likelihoods.

For evaluating boundary prediction, we use the precision-
recall software provided with the BSDS dataset. As a quan-
titative measure, we compute the mean of the 101-point
interpolated average precision for each test image. In La-
belMe, the provided test set of 1133 fully labeled images
was used, and ground truth was obtained by merging parts
into objects, layering the object regions according to esti-
mated depth, and flattening the layers so that each pixel la-
bel corresponds to the foremost object. Images were down-
sampled to a maximum height or width of 800 pixels. Pre-
dicted boundaries are considered correct if within 1% of the
image diagonal of any object boundary. While the ground
truth is not perfect, it is sufficiently accurate for useful eval-
uation. Our results are shown in Table 3, and examples for
LabelMe test images are shown in Figure 17. We show ad-
ditional results with color-coded figure/ground predictions
in Figure 18.
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LabelMe(AP) LabelMe (Rank1) BSDS (AP) BSDS (F)
Pb 0.388 3.7% 0.689 0.656
Global Pb 0.441 4.7% 0.744 0.697
Global Pb + UCM 0.474 22.5% 0.765 0.702
Occlusion iter 1 0.504 20.6% 0.708 0.656
Occlusion final 0.522 48.6% 0.698 0.653

Table 3. Test results for boundary prediction on the LabelMe and BSDS datasets. Comparison algorithms are Pb [49], Global Pb [46],
and an extension of global Pb to an ultrametric contour map (UCM) [6], with each trained on BSDS. We also show results of our algorithm,
trained on the Geometric Context dataset, after one iteration (iter 1) and after combining outputs from each iteration (final). Column 1:
average precision on LabelMe (AP computed for each image and averaged over all images). Column 2: percentage of images for which
each algorithm achieved the highest AP score. Column 3: average precision on BSDS. Column 4: F-measure on BSDS (the standard
measure for that dataset). Global Pb with UCM achieves the best results for perceptual boundaries in BSDS, while our algorithm provides
the best performance on object boundaries in LabelMe.

Region Extraction. Besides directly evaluating the bound-
aries, it can also be helpful to evaluate the regions that they
produce in a hierarchical segmentation. In doing so, we
follow the methodology of Arbelaez et al. [6]. To gener-
ate regions with the occlusion algorithm, we compute hi-
erarchical segmentations from the boundary map described
above. Likewise, we generate regions for Pb and Global
Pb using the hierarchical segmentation with oriented water-
shed described in [6]. The objective is to produce a set of
regions such that at least one region overlaps perfectly with
each object region from the ground truth segmentation. The
area-weighted average overlap score for a given image is
computed as

Scorearea =
∑
i

1

|Ri|
∑
i

|Ri|max
j

Overlap(Ri,Sj) (2)

and the unweighted score as

Scoreunweighted =
∑
i

1

Nr
max

k
Overlap(Ri,Sj) (3)

where Ri is the ith ground truth object region, |Ri| is the
pixel area of Ri, Sj is the jth region from the generated hi-
erarchical segmentation, Nr is the number of ground truth
regions, and Overlap(Ri,Sj) =

Ri∩Sj

Ri∪Sj
. We report the mean

score, averaged over images, in Table 4. When computing
the scores for PASCAL VOC2008, we use the 1023 images
in the trainval set with ground truth object segmentations
and ignore the “void” regions. Our results, shown in Ta-
ble 4 and Figure 19, indicate that our algorithm outperforms
Global Pb in both datasets, which was previously reported
to be the best algorithm for this task [6]. The per-image
results of our algorithm in region overlap are highly cor-
related with those of Global Pb: linear correlation of 0.79
for LabelMe and 0.60 for VOC2008. As we might expect,
the correlation between “iter 1” and our final result is even
stronger: 0.92 and 0.79 for LabelMe and VOC, respectively.

9. Discussion

Summary of Findings. We have proposed an algorithm for
finding major occlusion boundaries in an image and assign-
ing figure/ground labels to them. In addition to the usual
segmentation and figure/ground cues, we incorporate fea-
tures based on surface layout estimates, which experiments
show to be very important (Figure 16, Table 2). In gen-
erating the boundaries, our algorithm starts with an over-
segmentation and gradually removes boundaries until all re-
maining boundaries are confidently due to occlusion. One
of our innovations is to train a set of classifiers that operate
at different stages of the agglomerative segmentation pro-
cess. The motivation is some features become more impor-
tant as the regions evolve, so that a one-size-fits-all classi-
fier is not appropriate. Our experiments validate this hy-
pothesis, showing that some features are important only in
later stages (Figure 16) and that the retraining and refined
predictions help (Tables 2 and 3). Our CRF model also
improves occlusion and figure/ground classification perfor-
mance, compared to independent classification (Table 2).
Qualitatively, the occlusion boundary results (Figure 14)
and relative depth estimates (Figure 15) look promising, and
the results on several external datasets (Figures 17 and 18,
Tables 3 and 4) indicate that the boundaries may be more
generally useful as a pre-process for recognition and other
scene analysis tasks.

Limitations, Extensions, and Revisions. Currently, our
algorithm does not incorporate object-specific knowledge,
which makes it difficult to separate similar objects that are
grouped together in the image. The algorithm could be
improved by incorporating object detectors, as in [26], or,
more interestingly, developing a object localization and seg-
mentation algorithms that apply within some broader do-
main [17], such as animals or vehicles. Recent work in
generic object detection [42, 2, 4] may also be useful for
finding boundaries of individual objects.

Currently, we train with only 50 training images. Each an-
notation takes 5 to 15 minutes of careful work, but more
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Ground Truth Pb: 0.65 Global Pb: 0.84 Occlusion Iter 1: 0.95 Occlusion Final: 0.96

Ground Truth Pb: 0.21 Global Pb: 0.63 Occlusion Iter 1: 0.49 Occlusion Final: 0.80

Ground Truth Pb: 0.53 Global Pb: 0.62 Occlusion Iter 1: 0.64 Occlusion Final: 0.65

Ground Truth Pb: 0.46 Global Pb: 0.48 Occlusion Iter 1: 0.46 Occlusion Final: 0.52

Ground Truth Pb: 0.53 Global Pb: 0.49 Occlusion Iter 1: 0.31 Occlusion Final: 0.46

Ground Truth Pb: 0.29 Global Pb: 0.33 Occlusion Iter 1: 0.37 Occlusion Final: 0.37

Figure 17. Representative LabelMe test results for boundary prediction. Numbers indicate average precision for each example. Red
lines denote ground truth boundaries. Pixel brightness indicates predicted boundary strength.
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Top Occludes

Right 
Occludes

Left 
Occludes

Bottom Occludes

Image Global Pb Occlusion (ours) Occlusion w/ FG Figure/Ground Legend
Figure 18. More boundary prediction results on LabelMe. In the fourth column, we display occlusion and figure/ground confidence in
a single colored image. In HSV coordinates: occlusion confidence is intensity value, figure/ground confidence is saturation, and directed
orientation is hue. The legend on the right provides the hue and saturation interpretation (center is 50% likelihood of figure/ground label,
outer ring is 100% likelihood; direction to occluding region is hue). For example, a red boundary means that the region beneath is the
occluding region, while a green boundary means that the region to the right occludes.

LM Scorearea LM Scoreunweighted VOC2008 Scorearea VOC2008 Scoreunweighted

Pb + UCM 0.602 0.426 – –
Global Pb + UCM 0.712 0.588 0.620 0.616
Occlusion iter 1 0.753 0.593 0.635 0.629
Occlusion final 0.769 0.613 0.671 0.665

Table 4. Results for region coverage on the LabelMe and PASCAL VOC2008 segmentation datasets. Numbers indicate average overlap
(intersection area divided by union area) of each ground truth object region with the best matching region in the hierarchical segmentation,
averaged over all test images. Our occlusion algorithm outperforms Global Pb [46, 6] in this task. Our algorithm is trained on 50 images
from the Geometric Context dataset, while the Pb algorithms are trained on 200 images from the BSDS dataset.

annotations could be obtained, likely with small to mod-
erate improvements in performance. Alternatively, other
modalities, such as video or depth cameras, in which oc-
clusion boundaries can be automatically detected more reli-
ably, could be used to supervise the single-image algorithm.
The single image case is important, because we often have
access to only one image or a static camera.

Although the code is now available online for download, the
time to run the algorithm (a few minutes per image) may
be prohibitive to some. The speed of the algorithm might
be improved by: using a simpler initial boundary detector
(e.g., pre-thresholded Canny [9], rather than Pb [51]); by
dropping some of the more computationally expensive and
marginally useful features, such as the depth and geomet-
ric T-junction cues; finding a faster alternative to the CRF
model for incorporating long-range consistency; or begin-
ning with fewer initial regions. Some of these modifica-
tions may slightly degrade results, but would dramatically
increase speed.

Conclusion. We have proposed a method to recover oc-
clusion boundaries from one image and provided a thor-
ough experimental analysis. The resulting segmentations
or depth maps of our algorithm could be directly useful for
applications such as image editing or viewing on 3D dis-
plays. We also believe that the soft boundary maps with fig-
ure/ground labels could be valuable cues for object recog-
nition that are not well-captured by currently popular gra-
dient features. Although this work has made good progress
on a difficult problem, we have suggested several paths for
improvement, including unsupervised learning from video
and incorporation of generic or category-specific object de-
tection models.

Acknowledgements. This material is based upon work
supported by the NSF under award IIS-0904209 (DH) and
CAREER award IIS-0546547 (AE), as well as a Microsoft
Graduate Fellowship (DH). We are grateful to Jenna Hebert
for her immensely valuable efforts in ground truth labeling.
We thank the Berkeley group for making code available.

16



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

O
ve

rla
p

 

 

Pb+ucm
globalPb+ucm
occ

1

occ
final

0−0.0025 0.0025−0.0050.005−0.01 0.01−0.2 0.2−0.4 0.4−1 
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Region Area

A
ve

ra
ge

 O
ve

rla
p

 

 

Pb+ucm
globalPb+ucm
occ

1

occ
final

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

O
ve

rla
p

 

 

 >0.0025
 >0.005
 >0.01
 >0.2
 >0.4

(a) Algorithm Comparison (b) Effect of Region Area (c) Overlap Curves by Area

Figure 19. Comparison of region overlap in LabelMe. In (a), we show the cumulative distribution (fractional recall) of best-matching
regions that have at least the given overlap with ground truth. In (b), we show the average region overlap as a function of ground truth region
area. In (c), we show the overlap-recall curves for regions generated by the occlusion algorithm when matching ground truth regions with
the given minimum area. For instance, for 70% of the object regions with size of at least 1% of image area, the hierarchical segmentation
generated by the occlusion boundaries includes a region that has at least 50% overlap. All algorithms are more effective for larger objects;
our algorithm consistently outperforms Global Pb for this task.
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