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Abstract

SnapFind is an image retrieval system that enables
efficient interactive search of large data sets by exploit-
ing active disk technology. In contrast to earlier ap-
proaches, where data is typically pre-indexed for effi-
cient retrieval according to a fixed scheme, SnapFind
provides users with the flexibility to search non-indexed
data in a brute force manner. The query is translated
into a customized searchlet that is executed in parallel
by processors near the storage devices. This enables the
majority of irrelevant images to be discarded where they
are stored. Partial results are displayed during search
execution allowing users to interactively refine the query
without waiting for search termination. This paper ar-
gues that algorithms with user-adjustable parameters
are preferable to black-box image retrieval techniques.

1. Introduction

Content-based image retrieval (CBIR) research has
made significant progress in the last decade [13]. Early
work (e.g., Virage [2], QBIC [6]) focused largely on
whole-image searches, where data was typically pro-
cessed offline and compactly represented as a multi-
dimensional vector. Alternately, images were indexed
offline into several semantic categories [17]. Those sys-
tems enabled interactive queries in a computationally-
efficient manner on computers with limited processing
power; however, they could not support queries about
local regions within an image since indexing sub-regions
within an image would be prohibitively expensive. Al-
though whole-image searches are well-suited to queries
corresponding to general image content (e.g., “sunsets”),
they are poor at recognizing objects that only occupy a

portion of the image (e.g., “people wearing jeans”).

As computers become more powerful, region-based
image retrieval [3, 14, 16] is becoming more feasible.
In this approach, portions of the image are character-
ized by features such as color, texture, shape and posi-
tion. Region-based image retrieval addresses many of
the problems with whole-image retrieval, but the search
results can be biased by the method used to partition
the image into regions — and this decomposition is of-
ten static for performance reasons.

Object-based image retrieval is an alternate approach
to extracting semantic content within images. Motivated
by research in face and object detection [15], this ap-
proach performs a windowed scan over the entire image
and identifies regions that match are flagged by a pre-
trained classifier. Such an approach works best when
the classifier has been trained with a large amount of
training data, but recent results indicate that it may also
work with smaller numbers of training examples, when
augmented by user feedback [8].

Despite these technological improvements, the se-
mantic gap [5] between the user’s needs and the capabil-
ity of CBIR algorithms remains significant. Relevance
feedback [11] and active learning [4] are two attempts at
extracting some of this implicit semantic content from
the user. In the former, the retrieval system changes its
behavior based on positive and negative feedback pro-
vided by the user on partial query results. In the latter,
the system identifies data that could particularly improve
accuracy and asks the user to label this additional data.
Both of these approaches allow the user to influence the
search in an implicit rather than an explicit manner.

This paper proposes a brute-force approach to inter-
active search that exploits active disk technology [1, 12]
with flexible algorithms that provide explicit user con-
trol. Our application, SnapFind, enables users to exam-
ine partial results and iteratively refine their searches.



2. Interactive Brute-Force Search

For the foreseeable future, we believe that the user
will remain a key component of any image retrieval sys-
tem. However, image processing can eliminate a large
fraction of irrelevant data, utilizing the user’s limited at-
tention more effectively.

In current systems, the user is typically limited to
two options. The first is to manually search through all
of the images. This ensures a high recall rate, but is
extremely time-consuming. The other approach, advo-
cated by many content-based image retrieval systems,
is to index the data on pre-computed search criteria.
This allows fast retrieval, but if the pre-computed cri-
teria do not fit the user’s needs, the user can do little to
find the desired images. Our goal is to build an interac-
tive search system that explores the space between these
two extremes. Such a search system should leverage the
user’s understanding of the semantic content to drive the
search. Specifically, we believe that interactive search
should address the following requirements.

e Support flexible setting of algorithm parameters
to enable queries that are specialized both to the
search criteria and to the data being searched.

e Provide tools and visual feedback to help the user
choose the best algorithms and parameter settings
for the particular search.

e Show partial results to the user as they become
available so the user can refine unsatisfactory
queries before all the data is processed.

e The user should be able to tune the precision/recall
trade-offs to match the current search requirements.
For instance, a security analyst may accept a high
false positive rate to minimize the risk of missing
an important image.

e The system must not assume specific indices or
data representations so that new algorithms can be
easily deployed.

Interactive brute-force search has received little at-
tention because of its perceived impracticality for per-
formance reasons. We have built a system, named Dia-
mond, that addresses many performance challenges as-
sociated with brute-force search. This paper focuses on
SnapFind, an image search application running over Di-
amond, that meets the requirements outlined above.

3. Diamond

SnapFind uses the Diamond system [9] to efficiently
perform brute-force search. Figure 1 illustrates the Di-
amond architecture. Diamond separates the front end,
which encapsulates domain-specific application code on
the host computer, from the back end, which consists
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Figure 1. Diamond Architecture

of a domain-independent infrastructure that is common
across a wide range of search applications.

A Diamond application runs on the host computer
and interacts with the user to formulate a query. Once
a query has been formulated, the application translates
the query into a set of machine executable tasks (termed
a searchlet) that the storage devices use to filter out data
that does not match the search criteria. The searchlet
contains all of the domain-specific knowledge and acts
as a proxy for the application (and the user).

The searchlet consists of a set of filters and some con-
figuration state (e.g., filter parameters). For example, a
searchlet that retrieves images of people in dark business
suits could contain two filters: a color histogram filter
to find dark regions and a human face detector. Each
filter can independently discard an object. Objects that
pass all filters are presented to the domain application
through the searchlet API.

The domain application may perform additional pro-
cessing on matching objects such as cross-object corre-
lations or consulting auxiliary databases. Once a domain
application determines that a particular object matches
the user’s criteria, the object is shown to the user.

To increase interactive performance, Diamond caches
the results of each filter to speed up subsequent queries.
This is implemented by uniquely identifying each filter
and its dependencies (attributes and arguments) without
explicit support from the application or the application
developer. Diamond’s cache improves interactive search
time by quickly eliminating objects that failed to pass
a previously-executed filter and by reusing previously-
computed results (e.g. output of feature extraction). This
form of caching is particularly useful for searches with
iterative query refinement.

4. SnapFind

SnapFind (see Figure 2) is a flexible, extensible im-
age retrieval application that supports a variety of algo-
rithms. Its key features are described below.



4.1. Image Retrieval Algorithms

SnapFind is designed to support a wide range of
region- and object-based image searches. Adding a new
algorithm requires the developer to provide functions for
configuring the algorithm and for evaluating each image.
SnapFind currently supports the following algorithms.

e Color Histograms SnapFind builds region-based

histograms for color matching from example im-
age patches provided by the user at query-time. A
large set of parameters can be tuned (e.g., number
of bins, color space, stride, similarity metrics, etc).

o Texture filters SnapFind provides region-based
texture filters built from user-provided examples.
As with color histograms, users can interactively
adjust a wide range of search parameters.

o Offline-trained Object Detection SnapFind also
supports offline-trained detectors, such as face de-
tection [10, 15]. These detectors are well-suited
for identifying semantic content that is not user-
specific, but since the precision/recall trade-offs are
made at training time, the user has limited ability
to adjust their performance. SnapFind can partially
mitigate this problem by providing multiple classi-
fiers, each trained with different parameters.

4.2. Search Specification

When starting a new search, the user must create a set
of predicates that capture the desired semantic request.
A predicate is created by choosing an algorithm and ad-
justing the appropriate parameters. For example-based
algorithms (color or texture), the user provides examples
patches by highlighting regions in sample images (from
the local disk, the Web, or previous search results).

After the predicates are defined, the user constructs
a search by combining these predicates using boolean
operators. When the user starts a search, SnapFind
generates a searchlet using the search parameters and
passes the searchlet to Diamond. Diamond evaluates this
searchlet on each object in the data set (typically in par-
allel, on the active storage system), and returns matching
objects to SnapFind where they are displayed to the user.

4.3. Search Refinement

An important feature of SnapFind is its ability to in-
teractively refine a search based on partial results. This
is critical because of the difference between a user’s
needs and the limitations of current technology to au-
tomatically identify the desired semantic content. To
address this semantic gap, the user is given immediate
feedback on the progress of the current query (in terms
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Figure 2. SnapFind screen shot

of matching images). Based on this feedback, the user
can adjust the search parameters without waiting for the
initial query to terminate. Similar ideas have previously
been shown to be successful in the context of interactive
data analysis of large databases [7].

During the progress of a search, SnapFind presents
matching images to the user as they become available.
If the search is correct, then the user can scan the results
until the desired images are located.

In the more likely scenario, the results will not pre-
cisely match what the user had in mind. In this case
the user may refine the search by adding predicates or
adjusting parameters. A key to successful refinement is
providing the user with visual feedback on how any pro-
posed changes could affect the results.

When results are displayed to the user, SnapFind in-
dicates the reason for selecting an image by highlighting
those regions that match the current query. Addition-
ally, SnapFind allows the user to evaluate different pred-
icates on sample images (returned results or from other
sources) and to visually highlight those image regions
that match the current predicate settings. The user can
then refine the predicate parameters so that the search
can include or omit specific images.

5. Evaluation

This section examines some of SnapFind’s retrieval
characteristics. First we explore how modifying search
parameters affects search results. Next we examine
how some basic SnapFind searches compare to Blob-
world [3]. We then report experiences on searching a
reasonably-large collection of digital images.



Texture | Similarity | Scale Step || Hits |

Wave 0.30 | fixed-scale 7,731
Wave 0.30 1.2 || 11,826
Wave 0.60 | fixed-scale 1,890
Wave 0.60 1.2 4,209
Wave 0.90 | fixed-scale 53
Wave 0.90 1.2 121
Grass 0.30 | fixed-scale 2,352
Grass 0.30 1.2 4,707
Grass 0.60 | fixed-scale 301
Grass 0.60 1.2 724
Grass 0.90 | fixed-scale 4
Grass 0.90 1.2 8

Table 1. Two different texture searches
where the normalized similarity threshold
and the search scale were varied.

5.1. Effect of Search Parameters

These experiments test the hypothesis (see Section 2)
that interactive search systems should provide users with
the ability to explicitly control algorithm parameters.
Our dataset consisted of 112,404 images gathered from
personal photos, commercial image datasets, and images
from the web. These images were distributed over 12
storage nodes (1.2 GHz Intel® Pentium® 111 proces-
sors, 512 MB RAM and 73 GB SCSI disks), connected
via a 1 Gbps Ethernet switch. The host system contained
a 3.06 GHz Intel® Pentium XeonTMprocessor, 2 GB
RAM, and a 120 GB IDE disk. The storage nodes were
connected to the host via 1 Gbps Ethernet.

The first set of experiments examined two texture
queries: ocean waves and grass. Texture was mod-
eled using a difference-of-Gaussian filter trained using
a handful of example image patches. Table 1 shows the
effects of varying two parameters: the normalized simi-
larity threshold, and whether to search at multiple scales.

These results confirm that adjusting the parameters
has a significant impact on the number of objects that
are returned. The appropriate setting of such param-
eters are dictated by the needs of the application do-
main and the user’s personal preferences. For instance,
someone who quickly wants to find a few images that
match a particular criteria would prefer to set the param-
eters for high precision, while a user who is penalized
harshly for false negatives (e.g., homeland security) may
set the parameters for high recall to return a large num-
ber of images and tolerating many false positives. In
addition to this well-understood precision/recall trade-
off, SnapFind users are faced with the trade-off between
retrieval accuracy and the time spent manually filtering

| Color | Stride | Scale Step || Hits |
Blue-gray 8 | fixed-scale || 3,953
Blue-gray 8 1.2 || 4,665
Blue-gray 32 | fixed-scale || 1,482
Blue-gray 32 1.2 || 1,819
Striped Shirt 8 | fixed-scale || 1,658
Striped Shirt 8 1.2 || 3,267
Striped Shirt 32 | fixed-scale 194

Striped Shirt 32 1.2 514

Table 2. Two color searches, where the
stride and the scale were varied.

search results.

The second set of experiments examined two color
histogram queries: blue-gray ocean water, and a child’s
striped shirt. Table 2 shows the effects of varying two
parameters: the stride, and the scale.

Because the first query has a uni-modal color dis-
tribution, a small region sample is likely to match
many patches in the entire region at any scale. Since
the second query has a multi-modal color distribution,
searching at different scales greatly increases the num-
ber of matching images, decreasing the false negative
rate. These results confirm that query settings are both
application- and data- dependent.

5.2. Effectiveness of simple queries

These experiments compare the effectiveness of
SnapFind with simple predicates against Blobworld us-
ing similar local features. Blobworld employs segmen-
tation to decompose images into several regions, and de-
scribes each region with a summary of its color and tex-
ture statistics. We also examine the impact of allowing
the SnapFind user to iteratively refine the search.

The test set was 800 images from ten categories
of data from Corel (Arabian horses, auto racing, ele-
phants, helicopters, lions, owls, polar bears, windsurf-
ing, whitetail deer, and wolves). Within each category,
we assigned the first three images to be query images.
The complete list of the images in the dataset, and the
blobs used for querying the image set, are available at
http://www.cs.cmu.edu/ dhoiem/obir. Table 3
reports the results of these experiments.

For the Blobworld tests we performed three queries
on each image category and computed the average pre-
cision for the top 10 and 50 images. The reported num-
bers were averaged over the three queries. We report
two sets of numbers for Blobworld: the first is the re-
sults when using a fixed weighting of 0.5 for color and
1.0 for texture (labeled BW1); the second set varied the



Test | Metric Avg Arab. Auto | Eleph- | Helicop- | Lions | Owls Polar | Wind | W.Tail | Wolves
Horses | Race ants ters Bears surf Deer
BW | P(10) || 44.3% | 76.7% | 73.3% | 33.3% 20.0% | 26.7% | 86.7% | 30.0% | 6.7% | 36.7% | 50.0%
1 P(30) || 39.4% | 81.1% | 57.8% | 30.0% 8.9% 189% | 80.0% | 333% | 11.1% | 34.4% | 38.9%
BW | P(10) || 46.0% | 86.7% | 73.3% | 46.7% 13.3% 30.0% | 83.3% | 30.0% | 6.7% | 40.0% | 50.0%
2 P(30) || 41.3% | 83.3% | 57.8% | 35.6% 11.1% 189% | 83.3% | 35.6% | 14.4% | 34.4% | 38.9%
SF P10) || 42.7% | 33.3% | 70.0% | 50.0% 13.3% | 50.0% | 30.0% | 76.7% | 23.3% | 36.6% | 43.3%
1 P30) || 31.7% | 24.4% | 60.0% | 33.3% 10.0% | 45.6% | 21.1% | 55.6% | 17.8% | 21.1% | 27.8%
SF P(10) || 58.0% | 80.0% | 80.0% | 40.0% 30.0% | 70.0% | 70.0% | 70.0% | 40.0% | 50.0% | 50.0%
2 P(30) || 46.0% | 50.0% | 70.0% | 43.3% 20.0% | 56.7% | 56.7% | 53.3% | 30.0% | 43.3% | 36.6%

Table 3. A comparison of SnapFind (SF) to Blobworld (BW) on several categories from Corel.
BW1 uses a fixed weighting for the computed values while BW2 uses the best weighting for
each object class. SF1 is without interactive refinement while SF2 provides the user with a
3-minute interactive refinement period. Three precision metrics are reported for each class.

weightings of the object features and reported the best
results for each category (labeled BW2).

Using SnapFind we ran two different experiments.
The first allowed the user to create predicates for color
and texture using samples from one of the query im-
ages. In the second, the user interactively refines the
initial query using the partial results returned during the
search. For each query, the user was given three minutes
to refine the query. Normally, SnapFind presents results
to the user as they become available. To enable a di-
rect comparison with Blobworld, we modified SnapFind
to complete the search, and to rank its results by simply
averaging the confidence of each of the predicates. More
sophisticated methods of combining predicates would
improve SnapFind’s reported results for this task.

These results show that SnapFind with refinement
achieves better average performance than Blobworld,
validating our belief that user refinement should improve
search results. Within each of the object classes, the
results are more varied. The helicopter class is diffi-
cult, and neither algorithm performed well on that test;
SnapFind’s refinement step allowed the user to add more
color distributions to match the different types of heli-
copters (military, coast guard, etc). On the lion class,
SnapFind does better than Blobworld and we see that
additional refinement further improves the search. On
the owl class, Blobworld does significantly better than
SnapFind. However, SnapFind results do improve with
interactive query refinement. When SnapFind outper-
forms Blobworld, we believe it is because the user can
focus on the distinctive features of the object (e.g. the
texture of a lion’s mane) instead of the overall charac-
teristics of the object. For the cases where Blobworld
does better than SnapFind, the images tend to be similar
on global features that are better represented by Blob-
world’s more sophisticated color/texture model.

5.3. SnapFind Search Experience

These experiments explore SnapFind’s effectiveness
for searching large image collections. Here, one of the
authors searched for pictures of his child in a red Hal-
loween costume. There were 30 such images in the data
set, and most of them were taken at night. These exper-
iments used the same data set and hardware configura-
tions as the first experiment.

The queries used three predicates: one to find the
red costume, one to locate dark patches corresponding
to night, and a face detector to find the child. The author
performed several searches using different combinations
of these predicates. Each query was executed twice,
once with caching disabled, and once with a warm cache
to illustrate the two extremes of Diamond performance.
In real searches, where the user iteratively refines the
search, caching should provide significant benefits. Ta-
ble 4 shows results of these experiments.

The first row of the table estimates the time required
to manually search the image collection and serves as
a baseline measure as this is the only way to guarantee
100% recall. We obtained this estimate by measuring
the number of images a user could classify in a 5 minute
period, and extrapolating to the size of our data set. This
estimate is optimistic because it assumes the user can
maintain accuracy and a high rate of processing for an
extended period.

The rest of the table shows results for different com-
binations of filters. We make several observations. First,
since SnapFind displays partial results as soon as they
are available, the user can examine displayed images in
parallel with the Diamond search. Second, in the un-
cached cases, the total time is the same as the system
time, indicating that the user is able to process images
at the rate that they are delivered. In the cached cases,



Face Desired Images Uncached Cached

Red Black Detector Images Viewed Total System Total System

Similarity | Similarity Used? (Recall %) | by User | Time (s) | Time (s) | Time (s) | Time (s)

Manual - - N 30 (100%) | 112,404 14,290 - - -
Red-only 1 0.70 - N || 28(93.3%) 1,903 326 326 320 38
Red-only 2 0.90 - N || 19 (63.3%) 87 325 325 37 2
Red-Black 1 0.70 0.70 N || 20 (66.7%) 721 327 327 106 15
Red-Black 2 0.90 0.70 N || 13 (43.3%) 33 325 325 20 1
All 0.90 0.70 Y || 11(36.7%) 16 319 319 13 1

Table 4. Trade-off between recall and user’s time. Searches used combinations of three predi-

cates, several thresholds and with query caching enabled/disabled.

SnapFind displays images faster than the user can con-
sume them. Third, to achieve a high recall the user was
forced to manually classify 1,903 images. In this case,
the user processing time was so high that caching made
little difference.

In real-world searches (e.g., surveillance, medical im-
ages), a user will spend more time processing retrieved
results than in this simple test. We also believe that
caching will provide some benefit, giving lower system
times than in the uncached case. These observations lead
us to conclude that interactive brute-force search is prac-
tical because Diamond can deliver search results faster
than a user can consume them.

6. Conclusions

We believe that interactive brute-force search is most
useful when the user places a high value on the retrieval
results and is willing to invest a little time to improve
search quality. This type of search is also appropri-
ate when the image collection is being frequently mod-
ified, such as for surveillance applications, since pre-
computing image features may not be feasible.
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