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Abstract

Measuring image similarity is a central topic in com-

puter vision. In this paper, we learn similarity from Flickr

groups and use it to organize photos. Two images are sim-

ilar if they are likely to belong to the same Flickr groups.

Our approach is enabled by a fast Stochastic Intersection

Kernel MAchine (SIKMA) training algorithm, which we

propose. This proposed training method will be useful for

many vision problems, as it can produce a classifier that

is more accurate than a linear classifier, trained on tens of

thousands of examples in two minutes. The experimental

results show our approach performs better on image match-

ing, retrieval, and classification than using conventional vi-

sual features.

1. Introduction

Digital cameras have made it much easier to take photos,

but organizing those photos is still difficult. As a result,

many people have thousands of photos sitting on their hard

disk in some miscellaneous folder. Fortunately, the same

digital explosion that created the problem may also supply

the solution.

Using online photo sharing sites, such as Flickr, people

have organized many millions of photos into hundreds of

thousands of semantically themed groups. Our idea is to

determine which images are similar and how they are simi-

lar by learning from Flickr groups. Simply put, two images

are similar in some sense if they are likely to belong to the

same group. If we can learn these group membership like-

lihoods, we can help a user sort through his photo collec-

tion by text or image-based query and refine the search with

simple feedback. In doing so, we allow flexible, on-the-fly

organization of his photo album.

But how can we learn whether a photo is likely to belong

to a particular Flickr group? We can easily download thou-

sands of images belonging to the group and many more that

do not, suggesting that we train a classifier. Still, the time

that it would take to learn hundreds of categories is daunt-

ing. We propose a new method for stochastic learning of

support vector machines (SVMs) using Histogram Intersec-

tion Kernel (HIK). We combine the kernelized stochastic

learning algorithm from [14] with the support vector ap-

proximation trick [18] proposed for fast classification. The

result is an algorithm that is much faster and more accurate

than the original stochastic learning algorithm, allowing us

to learn from five thousand examples with 3000 features in

just 15 seconds. This algorithm will be useful for a wide

variety of computer vision algorithms.

Space allows only a brief survey of related work. We

wish to train a very large scale kernel SVM. There is a good

survey of current results in large-scale kernel machine train-

ing in [4]. Algorithms are generally of two classes; either

one exploits the sparseness of the lagrange multipliers (like

SMO [22] and variants), or one uses stochastic gradient de-

scent on the primal problem. Stochastic gradient descent

has the advantage that, at each iteration, the gradient is cal-

culated for only a single training example. Very good results

can be obtained without touching every example [25, 3].

Kivinen et al. describe a method that applies to kernel ma-

chines [14]. We use a similar form of incremental train-

ing, exploiting a method of Maji et al. [18] for very quickly

evaluating a histogram intersection kernel. In the same pro-

ceedings, [19] uses stochastic gradient descent to learn an

additive classifier with a max margin criteria avoiding the

need to store any support vectors. With certain regulariza-

tion, this is an approximation to the histogram intersection

kernel SVM.

There is an extensive content-based image management

literature, with recent reviews in [15, 8]. Appearance [26] or

iconic [13] matching are well established techniques. Clus-

tering images as a way to expose the structure of a collec-

tion dates to at least [2, 1]. Relevance feedback has been
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used at least since [6]. Annotating images with words to

allow word searches to at least [2]. None of these tech-

nologies works terribly well. Generally, users are querying

for specific objects or object classes [9], and supporting ob-

ject semantics is difficult. In recent work, Frome et al. [11]

show that local metrics around examples built using Caltech

101 images give good retrieval behavior. The most relevant

work is [24]. We both advocate the use of features com-

posed of category predictions for image retrieval. Our key

observation, which differs from [24], is that Flickr provides

an organizational structure with thousands of categories that

reflect how people like to group images, each with tens of

thousands of examples, and our SIKMA classifier allows

efficient and accurate learning of these categories.

Our similarity features capture the sense of an image

rather well. First, they make an effective feature for super-

vised learning of new categories, as we show on the PAS-

CAL 2007 dataset. Second, this property generalizes well.

We show that our similarity measure can be used for im-

age retrieval on a test dataset which was not obtained from

Flickr. In particular, we demonstrate marked improvements

on image clustering, retrieval, matching and relevance feed-

back using a large test dataset from Corel. These improve-

ments extend even to categories not well covered by our

Flickr groups.

2. Approach

We download thousands of images from many Flickr

groups. For each group, we train a kernelized SVM intro-

duced in section 2.1. For a test image, we use the trained

group classifiers to predict likely group memberships. We

use these predictions to measure similarity (Section 2.2).

2.1. Stochastic Intersection Kernel MAchines
(SIKMA)

We train a Stochastic Intersection Kernel MAchine for

each Flickr group as the classifier. Suppose we have a list of

training examples {(xt, yt), t = 1, · · · , T, yt ∈ {−1, +1}}.

We aim to learn a decision function f :X −→ R, using a

kernel machine; this yields f =
∑N

i=1 αiK(xi, •) where K

is a kernel function. Then for a test example u, the clas-

sification score is f(u) =
∑N

i=1 αiK(xi, u). In a primal

method, we obtain the kernel machine by minimizing the

regularized empirical risk:

1

T

T
∑

t=1

l(f(xt), yt) +
λ

2
‖f‖2 (1)

where l is a loss function, in our case the hinge loss

l(f(xt), yt) = max(0, 1 − ytf(xt)). Computing the gra-

dient of the regularized empirical risk involves a sum over

all data points, which is very expensive. In a stochastic gra-

dient method, we approximate the gradient by replacing the

sum over all examples with a sum over some subset, chosen

at random, and then take a step. It is usual to consider a

single example. In Kivinen et al.’s method [14], one sees

this as presenting the training examples to the classifier in

some random order, one by one, then updating the classifier

at each example to get a set of f , {f0, f1, ..., fT }. Now as-

sume we have ft−1. When the tth training example comes,

we take a step down the gradient of Q = l(f(xt), yt) +

λ
2 ‖f‖

2. By writing σt =

{

1 if ytft−1(xt) < 1
0 otherwise

, we ob-

tain the estimate of the new decision function as (see [14]

for the detailed derivation):

ft = (1 − ληt)ft−1 + ηtσtytK(xt, •) (2)

Where ηt is the step length at the tth step. This update

can also be written in terms of the lagrange multipliers

for the examples seen to date. In particular, we can write

αi = (1 − ληt)αi for i < t and αt = ηtσtyt. We can see

that when there are a large number of support vectors (this

would happen in large datasets), it is expensive to calculate

ft−1(xt). The NORMA algorithm in [14] keeps a set of

support vectors of fixed length by dropping the oldest ones.

As we shall see, doing so comes at a considerable cost in

accuracy.

Recently, Maji et al. [18] show that the support vectors

of an intersection kernel machine can be efficiently repre-

sented. This trick is exploited to train a fast stochastic inter-

section without dropping any support vectors.

Write ft−1 as
∑Nt−1

i=1 αiK(xi, •), where K denotes the

histogram intersection kernel. Then

ft−1(xt) =

Nt−1
∑

i=1

αi

D
∑

d=1

min(xi(d), xt(d)) (3)

=

D
∑

d=1

Nt−1
∑

i=1

αimin(xi(d), xt(d)) (4)

D is the feature dimension. At each dimension d, if we have

the sorted values of xi(d) as xi(d), with the corresponding

αi, then:

Nt−1
∑

i=1

αimin(xi(d), xt(d)) (5)

=
r

∑

l=1

αlxl(d) + xt(d)

Nt−1
∑

l=r+1

αl (6)

where xr(d) ≤ xt(d) < xr+1(d). As [18], we use M piece-

wise linear segments to approximate equation 6. Given that

feature histograms are normalized, each element of the fea-

ture vectors falls in the range of [0 1]. We divide this range

to M (not necessarily even) bins, and the starting value of

each bin is recorded in vector P .



Notice that the terms of equation 6 contain only partial

sums of α, rather than the values. This means that the com-

plexity of representing the kernel machine has to do with

these partial sums, rather than the number of support vec-

tors. We can store these sums in tables, and update them

efficiently. In particular, we have two tables B1 and B2

with dimensions M × D, where M is the number of bins

and D is the feature dimension. B1(m, d) contains the

value
∑

i αixi(d)σi, σi = 1 if xi(d) < P (m) and zero

otherwise; B2(m, d) stores the value
∑

i αiσi, σi = 1 if

xi(d) ≥ P (m) and zero otherwise.

To evaluate the function for xt(d), we quantize xt(d)
and look up in B1 and B2. The two values are interpolated

to calculate equation 6. Since the elements of the tables

are linear in the lagrange multipliers, updating the tables is

straightforward. At the t’th iteration both B1 and B2 are

multiplied by 1 − ληt. If σt is non-zero, the tables B1 and

B2 are updated accordingly.

Comparison: The computational complexity to train

SIKMA is O(TMD), where T is the number of training

examples that are touched, M is the number of quantiza-

tion bins and D is the feature dimension (compare the com-

putational complexity of the conventional SVM solver at

O(T 2D)). The space cost is O(MD) (the conventional

SVM solver needs O(T 2)), and evaluation is O(D) for each

test example. Unlike NORMA [14], SIKMA doesn’t need

to drop examples to maintain efficiency.

2.2. Measuring image similarity

We use the proposed SIKMA training algorithm to train

classifiers to predict whether an image is likely to belong to

a Flickr group. The set of predictions can be used to predict

similarity. We found a simple Euclidean distance between

the SVM outputs to work as well as any other (such as co-

sine distance between probability vectors, where the prob-

ability vectors were normalized using Platt’s probabilistic

outputs algorithm [23]). Once computed, this similarity

measure can be used to perform image-based queries or to

cluster images. Since we have names (groups) attached to

each prediction, we can also sometimes perform text-based

queries (e.g., “get images likely to contain people dancing”)

and determine how two images are similar.

3. Implementation details

3.1. Features

We use four types of features to represent images and

train the SVM classifier. The SIFT feature [17] is popularly

used for image matching and object recognition. We use it

to detect and describe local patches. We extract about 1000

patches from each image. The SIFT features are quantized

to 1000 clusters and each patch is denoted as a cluster index.

Each image is then represented as a normalized histogram

of the cluster indices. The Gist feature has been proven

to be very powerful in scene categorization and retrieval

[21]. We represent each image as a 960 dimensions Gist

descriptor. We extract Color features in the RGB space.

We quantize each channel to 8 bins, then each pixel is rep-

resented as a integer value range from 1 to 512. Each image

is represented as a 512 dimensional histogram by counting

all the pixels. The histogram is normalized. We also extract

a very simple Gradient feature, which can be considered

as a global and coarse HOG feature [7]. We divide the im-

age to 4*4 cells, at each cell, we quantize the gradient to 16

bins. The whole image is represented as a 256 dimensional

vector.

For each Flickr group, we train four SVM classifiers, one

for each of the above four features. We combine the outputs

of these four classifiers to be a final prediction on a valida-

tion data set. The final prediction is used to measure image

similarity.

To compare our results with conventional visual similar-

ity, we use a Unified visual feature, obtained by concatenat-

ing the above four visual features. Each feature is associ-

ated with a weight. The weights are learned on a validation

set, where we force the images from the same categories

to be close and images from different categories to be far

away with the learned weights. Similar methodology can

be found in [20]; this feature tends to outperform each sep-

arate feature, and so gives a fair appearance baseline.

3.2. Flickr groups

For our experiments, we use 103 Flickr groups that cap-

ture a range of common topics. Some large Flickr groups

are uninformative (e.g., “10 million photos”), and we ig-

nore them. Groups that we use are organized by objects,

such as “aquariums” and “cars”, scenes, such as “sunsets”

and “urban”, and abstract concepts, such as “Christmas”

and “smiles”. We provide the complete list (paraphrased)

below: aquariums, airplanes, American flags, animals, ar-

chitecture, art, bags, beaches, bees, bikes, birds, boats, bon-

sai, bottles, bridges, buses, butterflies, cameras, candles,

cars, castles, cats, chairs, characters, children, Christmas,

churches, concerts, cows, dances, dogs, dolphins, draw-

ings, ducks, eagles, eating, eggs, faces, fashion, ferns, fer-

rets, fireworks, fishing, flamingos, flowers, fog+rain, food,

frogs, fruits, the Golden Gate Bridge, hands, helicopters,

horses, ice, insects, laptop lunch, light, lizards, love, macro-

flower, monkeys, moons, motorbikes, mountains, mush-

rooms, painting, pandas, penguins, people, plants, rain,

rainbows, rural, sheep, skateboarding, skies, skyscrapers,

smiles, snails, sneakers, snow, socks, spiders, sports, squir-

rels, stairs, sunset, sushi, tea cup, teddy bears, tigers, toma-

toes, toys, trains, trees, trucks, turtles, urban, watches, water

drops, waterfalls, and weddings.

Note that, while this list is long, we could potentially



make use of thousands of categories, each containing thou-

sands of photographs.

Most groups contain 15, 000 ∼ 30, 000 images. To train

a group classifier, we also sample about 60,000 negative

images from other groups. Training each SVM using our

SIKMA algorithm takes about 150 seconds per classifier,

which tends to have between 5,000 and 8,000 support vec-

tors. This is remarkable, considering that standard batch

training is infeasible and that the previously proposed on-

line algorithm would take at least 10 times longer to pro-

duce a much less accurate classifier.

4. Experiments

In Section 4.1, we compare our fast histogram intersec-

tion SVM training algorithm (SIKMA) to alternatives. We

show that our method is much faster and more accurate than

a recently proposed stochastic learning method [14]. Our

method is nearly as accurate as batch training on small prob-

lems involving a few thousand examples and enables train-

ing with tens of thousands of examples. For example, our

method can train on 80,000 examples in 150 seconds, while

batch training requires several hundred seconds to train with

5,000 examples.

In Section 4.2, we evaluate the usefulness of our learned

similarity measure in several ways. We show that our sim-

ilarity measure allows much better image matching in the

Corel dataset and improves more with feedback than simi-

larity based on the original image features. We can also per-

form text-based searches on non-annotated images in some

cases.

4.1. SIKMA Training Time and Test Accuracy

We compare batch training, an existing stochastic learn-

ing algorithm NORMA [14], our proposed algorithm

SIKMA for training SVMs with the histogram intersection

kernel and linear SVM on the PASCAL VOC 2007 dataset

[10]. We also report average precision results for our 103

Flickr categories.

Classifier Comparison. The batch learning method is im-

plemented in LIBSVM [5]. LIBSVM does not support his-

togram intersection kernel directly, so we pre-compute the

kernel matrix with a Mex function and use LIBSVM to

solve it. In NORMA, the learning rate is set to be 0.71
λ
√

t
,

and it keeps 500 support vectors at most. λ is validated

for each category. In SIKMA, the learning rate is set to be
1

λ(t+100) , and λ is set to be 0.00005. The number of quan-

tization bins is set to be 50. We also compare with linear

SVM implemented in LIBSVM, where the parameter C is

cross validated.

This experiment is conducted on the PASCAL VOC

2007 image classification task, which has 20 object classes.

As features, we use a 3000-bin histogram of quantized

SIFT codewords, a standard feature for this task. The av-

erage precision (AP) results, training time and test time of

different methods are compared in Table 1. Our method

achieves similar accuracy to batch training when running

for 6 rounds and is more accurate than either NORMA (also

with histogram intersection kernel) or batch training of lin-

ear SVMs. We were surprised that the online kernelized

learner (NORMA) tends to underperform the batch linear

SVM. This seems to be due to the approximation of discard-

ing support vectors with low weights and due to difficulty in

choosing the learning rate for NORMA, on which we spent

considerable effort. By contrast, our method is insensitive

to the learning rate and consistently outperforms the linear

classifier.

Our algorithm is much faster than NORMA and the

batch algorithm. For larger problems, the speedup over

batch will increase dramatically, and NORMA will be

forced to make larger approximations at great cost to clas-

sifier accuracy. The same is true for memory requirements,

which would make standard batch training impossible for

problems with tens of thousands of examples.

In summary, our SIKMA algorithm makes it easy to

train SVMs with the histogram intersection kernel on large

datasets. Recent work by Maji et al. [18] makes classifi-

cation nearly as fast as for linear kernels (this enables our

training method). Together, these works are important be-

cause histogram intersection kernels tend to provide more

accurate classifiers for histogram-based features that are

used in many computer vision problems.

Performance on Flickr Categories. In Figure 1, we show

average precision for our 103 Flickr categories. These are

trained using positive group images (most have 15, 000 ∼
30, 000 positive images) as well as about 60,000 negative

images sampled from other groups. Each group has 20,900

held out test times: 500 positive and 20,4000 negative sam-

pled from other groups. The average AP over these cate-

gories is 0.433.

4.2. Evaluation of Learned Similarity Measure

Our similarity measure consists of Euclidean distance

between predictions on Flickr categories (as mentioned ear-

lier, this works as well as other slightly more complicated

distances). The quality of the similarity measure is the most

important factor in automatic organization, and we evaluate

it in several ways. We can rank images according to sim-

ilarity (image-based query) or cluster a set of images. We

can also find images that are likely to belong to particular

groups or have certain tags. We can also often say how two

images are similar, suggesting the possibility of more in-

tuitive feedback mechanisms. The following experiments

are performed on 38,000 images from the Corel dataset (ex-

cept where noted). Each image has a CD label and a set

of keyword annotations, which we treat as ground truth for



Linear NORMA (HIK, SV=500) SIKMA (2 rounds) SIKMA (6 rounds) Batch (HIK)

AP 0.362 0.308 0.414 0.436 0.440

training time (seconds) - 172.4 15.3 46.7 638.0

test time (seconds) 0.5 63.9 3.9 3.9 236.8

Table 1. The AP values, training time and test time of the five SVM training methods are compared on the PASCAL VOC 2007 image

classification task. All the values are averaged over the 20 object categories. HIK denotes the histogram intersection kernel. NORMA

(HIK, SV=500) denotes HIK is used with the NORMA algorithm and at most 500 support vectors are kept. SIKMA (2 rounds) denotes the

SIKMA algorithm visits each training example twice. SIKMA (6 rounds) denotes each training example is visited six times.
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Figure 1. The AP scores of the 103 Flickr groups (categories). For each

category, There are 20,900 held-out examples (500 positive). The five

groups which get the highest AP values are: laptop lunch, fireworks, pan-

das, socks and moon; the five groups which get the lowest AP values are:

love, art, trees, ice and light.

matching. There are 100 images per CD, and roughly 3-5

keywords per image.

Image Matching. We randomly select 500 images to be

queries and rank the remaining Corel images using ei-

ther our learned similarity or visual feature-based similarity

measures. Images that the CD label or at least one keyword

in common are considered correct matches; others are in-

correct matches. For each query image, we calculate the

AP value. Our learned similarity produces an AP of 0.221,

averaged over the queries; for feature-based similarity, the

average AP is 0.192. Fig. 2 compares the nearest neighbor

images of a query image given by the two similarity mea-

sures. Images are sorted by similarity in descending order

from left to right, top to bottom.

We also randomly select 25 images for keywords

“city”,“house” and “skiing”, which don’t have correspond-

ing Flickr categories in our collection. For each of these

images, we also rank the other Corel images and calculate

the AP score. The average AP scores for these categories

with the learned similarity is 0.111, 0.120 and 0.097, which

is slightly better than for the visual similarity at 0.105,

0.113, 0.096. These results indicate that the learned sim-

ilarity works best when queries are related to the learned

Flickr categories but provides an advantage in out of sam-

ple cases as well. As more Flickr categories are learned,

fewer queries will be out of sample. Note that 1,000 classi-

fications per second can be performed after computing the

features, so it is entirely feasible to use thousands of Flickr

categories (downloading tens of millions of images is the

main obstacle for training).

Image Matching with Feedback. Using a subset of 10

CDs, we also investigate the effectiveness of simple rele-

vance feedback. We compare the performance of our fea-

tures with that of pure appearance features in a relevance

feedback task. Because users will provide very little feed-

back (we use 5 positive and 5 negative examples), a good

simulation of this task is demanding. We use the same

CDs as as [16], which are chosen to provide an unambigu-

ous ground truth: 1 (sunsets), 21 (race cars), 34 (flying

airplanes), 130 (African animals), 153 (swimming), 161

(egyptian ruins), 163 (birds and nests), 182 (trains), 276

(mountains and snow) and 384 (beaches). Images are con-

sidered to match only if they have the same CD label. We

compute average AP over 25 randomly selected queries.

To simulate feedback, after each query, we select the top

five negative examples and five randomly chosen positive

examples from among the top 50 ranked images and la-

bel them according to ground truth. We use this to train

a weight vector on our distance function (initially uniform).

With the feedback, we aim to minimize the following func-

tion:

10
∑

i

yiw • (xq − xi)
2 (7)

Subject to wd ≥ 0,
∑

d wd = 1 where xq is the feature rep-

resentation of the query image. xi is the feedback example.

yi is 1 if it is positive, otherwise 0. If we had very exten-

sive feedback, we would have a good estimate of the cost

function. With relatively little feedback, the model of cost

applies only locally around the current values of w. For

this reason, we take a single step down the gradient, then

project to the constraints. The scale of the step is chosen on

a validation set of 20 queries, and then fixed.

The average AP values on these 25 query images with



Query image 25 nearest neighbors with visual features 25 nearest neighbors with Flicr prediction features

Figure 2. The left column shows a “ship” query image; the center column shows the 25 nearest neighbor images found with visual features; the right

column shows the 25 nearest neighbor images found with Flickr prediction features. The rank is from left to right, from top to bottom.
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Figure 3. The average AP values with three rounds of feedback. The

red line shows the results with Flickr prediction features and the blue line

shows the results with visual features.

three rounds of feedback are compared in Fig. 3. Note that

the similarity based on Flickr prediction features improves

more with each round of feedback than with the visual fea-

tures. Fig. 4 shows the nearest neighbors images without

feedback and with the first round of feedback for a query

image. The selected negative images are shown in red and

selected positive images are shown in green.

Semantic similarity of image pairs. In Fig. 5, we show

six pairs of similar Corel images. The text shows the Flickr

groups which both of the images are likely to belong to.

Unsupervised clustering results on Corel data set. Us-

ing the same 10 CDs as listed above, we also compare re-

sults on clustering. We represent these images with our pre-

diction features (classification scores) and visual feature re-

spectively. We cluster these 1000 images to 15 clusters in an

unsupervised way (K-means). Each cluster is labeled with

the most common CD label in this cluster. Each image is

labeled by the cluster label accordingly. The accuracy of

Flickr prediction features is 0.559 and the accuracy of vi-

sual features is 0.503.

Text-based queries. Because each Flickr category can be

described with several words, we can support text-based

queries. When users input a word query, we can find the

Flickr group whose description contains such words. The

corresponding Flickr group classifier is then used to clas-

sify personal photos. The photos with high confidence are

returned to users.

We test this on the Corel data set,with two queries “air-

plane” and “sunset”. There are about 38,000 images in total,

from which there are 840 “airplane” images and 409 “sun-

set” images. We rank the images according to the Flickr

group classification score. We get an AP value 0.28 for “air-

plane” and 0.16 for “sunset”. In the 100 top ranked images

for “airplane”, there are 52 true positives; in the 100 top

ranked images for “sunset”, there are 26 true positives.

The Corel images which are most relevant to “sunset”

and “airplane” are shown in Fig. 6 according to the classifi-

cation scores.

Classification. We can also use our Flickr group predic-

tions as features for classification. In Table 2, we com-

pare our prediction features with visual features. As imple-

mented in [12], for the visual features, we train a chi-square

kernel machine with the unified features (chi-square kernel



Query image 45 nearest neighbors without feedback

45 nearest neighbors after the first round of feedback

Figure 4. The left column shows the query image; the center column shows the 50 nearest neighbors found with the Flickr prediction

features, the five negative images (in red) and five positive images (in green) are selected for feedback; after one round of feedback, we get

the 50 nearest neighbors shown in the right column.

mountains(3.0) castles(1.2) sheep(1.2) turtles(0.9) cows(0.6) dances(3.8) weddings(2.4) smiles(2.3) love(1.7) sports(1.4)

sports(2.6) dances(2.0) weddings(1.0) toys(0.5) horses(0.5) painting(1.5) children(1.1) weddings(1.0) love(0.6) animals(0.6)

fireworks(15.6) Christmas(7.6) rain(4.0) water drops(2.5) candles(2.0) painting(2.4) art(1.2) macro-flowers(0.9) hands(0.9) skateboard(0.6)

Figure 5. Six pairs of similar Corel images. The text shows the top five Flickr groups which both of the images are likely to belong to. The value for each

group in the parenthesis is 100 × p(group | image1)p(group | image2).

is the state-of-the-art for histogram based image classifica-

tion). Our group predictions features are not histograms, so

we have to use a RBF kernel instead. Table 2 shows that our

features are usually more effective than the visual features

that are used to train the Flickr classifiers. Exceptions are

objects that are typically in the background, such as tables,

chairs, and bottles.

5. Conclusion

We have proposed SIKMA, an algorithm to quickly train

an SVM with the histogram intersection kernel using tens

of thousands of training examples. We use SIKMA to

train classifiers that predict Flickr group membership. This

serves as a basis for image similarity: two images that are

likely to belong to the same Flickr groups are considered

similar. Our experimental results show that our approach



aeroplane bicycle bird boat bottle bus car cat chair cow

Visual features 0.647 0.399 0.450 0.540 0.207 0.425 0.577 0.388 0.439 0.273

Prediction features 0.650 0.443 0.486 0.584 0.178 0.464 0.632 0.468 0.422 0.296

table dog horse motorbike person plant sheep sofa train monitor

Visual features 0.373 0.343 0.657 0.489 0.749 0.330 0.324 0.323 0.619 0.322

Prediction features 0.208 0.377 0.666 0.503 0.781 0.272 0.321 0.268 0.628 0.333

Table 2. The AP value with Flickr prediction features and visual features on PASCAL 2007 classification for each object class.

The top 25 images relevant to “airplane”

Figure 6. The Corel images which are most relevant to the query “air-

plane”, obtained by one-vs-all classification with our SIKMA method,

trained on the Flickr airplane group. Images are ranked according to their

classifier score.

measures image similarity better than matching with visual

features.
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