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Abstract

Occlusion reasoning, necessary for tasks such as navi-
gation and object search, is an important aspect of every-
day life and a fundamental problem in computer vision. We
believe that the amazing ability of humans to reason about
occlusions from one image is based on an intrinsically 3D
interpretation. In this paper, our goal is to recover the
occlusion boundaries and depth ordering of free-standing
structures in the scene. Our approach is to learn to identify
and label occlusion boundaries using the traditional edge
and region cues together with 3D surface and depth cues.
Since some of these cues require good spatial support (i.e.,
a segmentation), we gradually create larger regions and use
them to improve inference over the boundaries. Our experi-
ments demonstrate the power of a scene-based approach to
occlusion reasoning.

1. Introduction

What makes scene understanding different from other
image processing tasks, such as medical or aerial image
analysis, is the notion that the image is not a direct rep-
resentation, but merely a projection of the 3D scene. One
major consequence of this projection is occlusion – the con-
cept that two objects that are spatially separated in the 3D
world might interfere with each other in the projected 2D
image plane. Consider the scene in Figure 1: nearly every
object is partially occluded by some other object, and each
occludes part of the ground. Yet, despite their pervasive-
ness, occlusions have too often been ignored. In computer
vision, the study of occlusion reasoning has been largely
confined to the context of stereo, motion and other multi-
view problems (e.g., [3, 24, 28]). For single-view tasks,
such as object recognition, occlusions are typically consid-
ered a nuisance requiring more robust algorithms.

In this paper, we argue that occlusion reasoning lies at
the core of scene understanding and must be addressed ex-
plicitly. Our goal is to recover the boundaries and depth
ordering of prominent objects in sufficient detail to provide
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Figure 1. Given an image (left), we recover occlusion boundaries
(center) and infer a range of possible depths (right) that are con-
sistent with the occlusion relationships. In the center, blue lines
denote occlusion boundary estimates, arrows indicate which re-
gion (left) is in front, and black hatch marks show where an object
is thought to contact the ground. On the right, we display the min-
imum and maximum depth estimates (red = close, blue = far).

an accurate sense of depth. Our greatest challenge is that
objects are typically defined, not by homogeneity in appear-
ance, but by physical connectedness. For example, in Fig-
ure 1 the most prominent objects are the jungle gym, the
boy, and the vegetation. Of these three, only the vegetation
can be identified as a single region based on local appear-
ance. How do we have any hope of realizing that the black
shorts, white shirt, and small circular region above the shirt
actually form a single object?

We believe that the perception of these structures as sin-
gle objects arises from a physical 3D interpretation of the
scene. Correspondingly, we consider a scene to consist of
a ground plane, a set of free-standing structures (objects),
and the sky. In our example, the entire boy is an object be-
cause his whole body is connected to the ground through
his legs. Our goal is to determine which parts of the im-
age correspond to ground, objects, and sky and to find the
boundaries and a depth ordering of the objects. Then, with
estimates of visible object-ground contact points, we can
recover a depth range, up to a scale. Our approach is to
learn models of occlusion based on both 2D perceptual cues
and 3D surface and depth cues from a training set. We can
then use those learned models to gradually infer the occlu-
sion relationships, reasoning together about boundaries in
the image and surfaces in the scene.

While the task we have set for ourselves is clearly very
difficult, we believe that it is necessary to make progress
in scene understanding. Indeed, the importance of occlu-
sion boundaries for human scene perception has long been
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Figure 2. Illustration of our occlusion recovery algorithm. Beginning with an initial oversegmentation into thousands of regions, we grad-
ually progress towards our final solution, iteratively computing cues over boundaries and regions in the current segmentation, estimating a
soft boundary map by performing inference over our CRF model, and using the boundary map to create a new segmentation. At the end of
this process, we achieve the result shown in Figure 1.

established by psychologists. Gibson argues that occlusion
boundaries, together with surfaces, are the basis for the per-
ception of the surface layout of a scene [7]. Biederman
includes occlusion (or interposition) as one of the five re-
lational rules for a well-formed scene [2]. Good progress
has been made in operationalizing several of Biederman’s
rules, including likelihood [27], support [13], size [12], and
position [25]. Occlusion reasoning is the natural next step.

1.1. Background

Early computer vision successes in image understand-
ing, such as Roberts’ blocks world [20], encouraged interest
in occlusion reasoning as a key component for a complete
scene analysis system. In 1968, Guzman proposed an ele-
gant approach to interpret polyhedral line drawings: define
a set of possible line labels and use constraint propagation
to rule out globally-inconsistent geometric interpretations.
This approach has been more fully developed by Waltz [30]
and others (e.g., [4]), with extensions to handle curved ob-
jects [16] as well as algebraic [26] and MRF-based [22]
reformulations. While these techniques have been mostly
limited to line drawings, Ren et al. [19] have recently pro-
posed a method for labeling occlusion boundaries in images
of natural scenes. They take a two-stage approach of image
segmentation, followed by figure/ground labeling of each
boundary fragment according to local image evidence and
a learned MRF model. Given a perfect segmentation, their
method produces impressive results on difficult natural im-
ages. But performance drops dramatically without perfect
segmentation, suggesting that the main difficulty is in find-
ing occlusion boundaries, rather than labeling them.

However, most segmentation algorithms rely on 2D per-
ceptual grouping cues, such as brightness, color, or tex-
ture similarity for region-based methods [1, 6, 18] or edge
strength, continuity, and closure for contour-based methods
(e.g., [14]). As a result, the boundaries of such segmenta-
tions could be due to reflectance, illumination, or material
discontinuities as well as occlusions, and resulting regions
need not correspond to actual objects (see BSDS [18]).

Our goal of recovering depth is similar to recently pro-

posed methods by Hoiem et al. [11] and Saxena et al. [23]
for single-view 3D reconstruction. These methods, how-
ever, are likely to oversimplify the 3D model when the scene
contains many foreground objects. By explicitly reasoning
about occlusions, we enable much more accurate and de-
tailed 3D models of cluttered scenes.

1.2. Algorithm Overview

Our strategy is to simultaneously reason about the re-
gions and boundaries in the image and the 3D surfaces of
the scene using learned models. We learn to identify bound-
aries based on a wide variety of cues: color, position, and
alignment of regions; strength and length of boundaries; 3D
surface orientation estimates; and depth estimates. In a con-
ditional random field (CRF) model, we also encode Gestalt
cues, such as continuity and closure, and enforce consis-
tency between our surface and boundary labels.

To provide an initial conservative hypothesis of the oc-
clusion boundaries, we apply the watershed segmentation
algorithm to the soft boundary map provided by the Pb
algorithm of Martin et al. [17] (skipping the non-maxima
suppression step, as suggested by Arbelaez [1]). This pro-
duces an oversegmentation into thousands of regions that
preserves nearly all true boundaries. In training, we assign
ground truth to this initial hypothesis. Given a new image,
our task is to group the small initial regions into objects and
assign figure/ground labels to the remaining boundaries.

To get a final solution, we could simply compute cues
over each region and boundary and perform a single seg-
mentation and labeling step. However, the small regions
from the initial oversegmentation do not allow the more
complicated cues, such as depth, to be reliable. Further-
more, global reasoning with these initial boundaries is inef-
fective because most of them are spurious texture edges.

Our solution is to gradually evolve our segmentation by
iteratively computing cues over the current segmentation
and using them with our learned models to merge regions
that are likely to be part of the same object. In each itera-
tion, the growing regions provide better spatial support for
complex cues and global reasoning, improving our ability



Occlusion Cue Descriptions Num

Region 18
R1. Color: distance in L*a*b* space 1
R2. Color: entropy difference of L*a*b* histograms 1
R3. Area: area of region on each side 2
R4. Position: differences of bounding box coordinates 10
R5. Alignment: extent overlap (x,y, overall,at bndry) 4
Boundary 7
B1. Strength: average Pb value 1
B2. Length: length / (perimeter of smaller side) 1
B3. Smoothness: length / (L1 endpoint distance) 1
B4. Orientation: directed orientation 1
B5. Continuity: minimum diff angle at each junction 2
B6. Long-Range: number of chained boundaries 1
3D Cues 34
S1. GeomContext: average confidence, each side 10
S2. GeomContext: difference of S1 between sides 5
S3. GeomContext: sum absolute S2 1
S4. GeomContext: most likely main class, both sides 1
S5. GeomTJuncts: if event of vrt-gnd-vrt, vrt-sky-vrt 4
S6. GeomTJuncts: if S8 for both boundary endings 2
S7. Depth: three estimates, each side 6
S8. Depth: discontinuity along boundary 3
S9. Depth: minimum depth discontinuity (un/signed) 2

Table 1. Cues for occlusion labeling. The “Num” column gives
the number of variables in each set. We determine which side of
a boundary is likely to occlude (neither, left, right) based on esti-
mates of 3D surfaces, properties of the boundary, and properties
of the regions on either side of the boundary. Some information
(such as S1) is represented several ways to facilitate learning and
classification.

to determine whether remaining boundaries are likely to be
caused by occlusions. Each iteration (illustrated in Figure 2)
consists of three steps based on the image and the current
segmentation: (1) compute cues; (2) assign confidences to
boundaries and regions; and (3) remove weak boundaries,
forming larger regions for the next segmentation. We de-
scribe each of these steps in the following sections.1

2. Cues for Occlusion Reasoning

Traditional approaches to segmentation are based on re-
gion color and texture cues or boundary cues, such as gra-
dient strength. These 2D cues are helpful for occlusion rea-
soning as well, but we can further benefit from 3D cues of
surface orientations and depth because our segmentations
are defined according to physical boundaries. Using all of
these cues, we learn to detect whether a boundary is likely
to be due to an occlusion and, if so, which side is likely to
be in front. Our occlusion cues are listed in Table 1 and
described below.
Region Cues. Adjacent regions are more likely to be sep-
arate objects with an occlusion boundary between them if
they have different colors or textures or are misaligned. Fur-

1See Chapter 4 of the dissertation of Hoiem [10] for further details.
Data and code is publicly available.

(a) Image (b) Min Depth (c) Max Depth
Figure 3. Illustration of minimum and maximum depth estimates.
In (a), we show a segmentation with figure/ground labels (left of
arrow is foreground). In (b) and (c), we show the ground-contact
points (’X’) corresponding to minimum and maximum estimates
of depth. If the contact points of a region are visible, the depth of
the region is known (up to a scale). Otherwise, we estimate a depth
range, based on the visible portion of the region and its occlusion
relationships to objects with known depth.

ther, as lower regions tend to be closer, image position is a
valuable cue for figure/ground labeling. We represent color
in L*a*b* space, and we use as cues the difference of mean
color (R1 in Table 1) and the difference between the entropy
of histograms (8x8x8 bins) of the individual regions versus
the regions combined (R2). We also represent the area (R3),
position and differences of the bounding box and center co-
ordinates (R4), and the alignment of the regions (R5), mea-
sured by overlap of minimum to maximum position along
each axis.

Boundary Cues. Long, smooth boundaries with strong
color or texture gradients are more likely to be occlusion
boundaries than short boundaries with weak gradients. To
represent boundary strength (B1), we take the mean Pb [17]
(probability of boundary) value along the boundary pixels,
without applying non-maxima suppression. We also pro-
vide a measure of surroundedness (B2): the ratio of bound-
ary length to the perimeter of the smaller region. We mea-
sure smoothness (B3) as the ratio of boundary length to Eu-
clidean distance between endpoints, orientation (B4) as the
angle between endpoints, and continuity (B5) as the differ-
ence between the orientations of adjacent boundaries. Fi-
nally, we apply a simple chaining algorithm to chain ap-
proximately (within 45 degrees) continuous boundaries to-
gether (B6).

3D Surface Cues. Many occlusion boundaries can be found
by determining where two adjacent regions have different
3D surface characteristics. For instance, a woman standing
in front of a building is a solid, non-planar surface occlud-
ing a planar horizontal surface (the ground) and a planar
vertical surface (the building wall). We can take advantage
of the work of Hoiem et al. [13] to recover surface informa-
tion, which we represent as the average confidence (S1-S4)
for each geometric class (horizontal support, vertical pla-
nar, vertical solid non-planar, vertical porous, and sky) over
each region.

T-junctions, which occur when one boundary ends on an-
other boundary, have long been used as evidence for an oc-
clusion event [8]. Such junctions, however, are only reliable
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Figure 4. The five types of valid junctions with the expressions for their corresponding potentials. By convention the foreground region
(shaded) is to the left of the directed edge. Dotted lines indicate non-occlusion boundaries.

indicators when they occur at the boundaries of surfaces,
not within them. As a cue, we record the event of geomet-
ric T-junctions (S5-S6) by finding where a boundary chain
(B6) transitions from a ground-vertical or sky-vertical to a
vertical-vertical boundary, according to the most likely sur-
face labels (S4).

3D Depth Cues. If we can determine that there is a large
depth discontinuity between adjacent regions, the boundary
is likely to be an occlusion boundary. Though we cannot
calculate the absolute depth of a region without knowing
the camera parameters, we can estimate the relative depth
between two regions if we can see where each region con-
tacts the ground. When the ground contact point of a region
is occluded, we can estimate a possible depth range for that
region (see Figure 3).

More formally, under assumptions of no camera roll, unit
aspect ratio, zero skew, and an approximately level cam-
era, the depth of a point at ground level at pixel row vi is
given by z = fyc

vi−v0
, where f is the camera focal length,

yc is the camera height, and v0 is the horizon position.
Therefore, given the horizon, the ground-vertical-sky sur-
face labels, and ground-vertical contact points, we can ap-
proximate the depth of an image region, up to the scale
fyc. The depth log difference of two such ground points
is log(z2) − log(z1) = − log(v2 − v0) + log(v1 − v0).

We estimate the horizon to be below the lowest sky pixel,
above the highest ground pixel, and as close to the image
center as possible. We estimate the ground-vertical contact
points using a decision tree classifier based on the shape
of the perimeter of a region, as described by Lalonde et
al. [15]. For each region, we provide three estimates of
depth (S7-S9) corresponding to three guesses of the ground-
contact point. The first is estimated by computing the clos-
est ground pixel directly below the object, giving a trivial
underestimate of depth. The second assigns the depth of ob-
jects without visible ground-contact points as the maximum
depth of the objects that occlude it, giving a more plausible
underestimate of depth. The third assigns such objects the
minimum depth of objects that it occludes, giving an over-
estimate of depth. The depth range images displayed in our
results depict the second and third of these estimates.

3. CRF Model for Occlusion Reasoning

Once we have computed cues over the boundaries and
regions from the current segmentation, the next step is to
estimate the likelihoods of the boundary labels (denoted 0
for no boundary or the region number of the occluding side)
and of the surface labels (into “ground”, “planar”, “porous”,
“solid”, and “sky”). Our CRF model allows joint inference
over both boundary and surface labels, modeling bound-
ary strength and continuity and enforcing closure and sur-
face/boundary consistency.

We represent the model with a factor graph, in which the
probability of the boundaries and surfaces is given by

P(labels|data) =
1
Z

Nj∏

j

φj

Ne∏

e

γe (1)

where in shorthand notation we denote junction factor φj

and surface factor γe, with Nj junctions and Ne boundaries
in the graph and partition function Z.

The junction factors encode the likelihood of the label
of each boundary according to the data, conditioned on its
preceding boundary if there is one. They also enforce clo-
sure and continuity. Though there are 27 possible labelings
of boundary triplets, there are only five valid types of three-
junctions, up to a permutation. We give the terms for these
five types in Figure 4. Four-junctions are handled in a sim-
ilar manner. A prohibitively high penalty is set for invalid
junctions, such as one edge leading into the junction and
none leading out.

The surface factors encode the likelihood of the surface
label of each region according to the data and enforce con-
sistency between the surface labels and the boundary labels.
We impose a strong penalty (ρinconsistent = e−1) for the
lack of a boundary between different geometric classes, for
the ground region or sky occluding a vertical region, and
for sky occluding the ground. We impose a weaker penalty
(ρfloating = e−0.25) for a vertical region that is entirely sur-
rounded by another vertical region or by sky (which would
imply that the former is floating). The unary region likeli-
hood is computed as the mean geometric class confidence
over the region (S1 in Table 1). To write one surface fac-
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Segmentation Interpretation 1 Interpretation 2
Figure 5. Examples of CRF junction factors (top row), defined over
each junction, and surface factors (bottom row), defined over each
boundary, for two different figure/ground labelings of a segmen-
tation. Left side of arrows indicates foreground, and dashed lines
indicate non-occlusion boundaries. To improve clarity, we omit
the data term in the likelihood expressions here.

tor term per boundary, the unary region terms are set to

P(ri|data)
1

ni , where ni is the number of boundaries sur-
rounding the region with surface label ri.

In Figure 5, we show the factor terms for example seg-
mentation and line labelings. Note that the factor graph,
when given a valid labeling and excluding the surface terms,
decomposes into one likelihood term per boundary. This
nice property allows us to learn boundary likelihoods using
standard machine learning techniques, such as boosted de-
cision trees, without worrying about CRF interactions (see
Section 5 for implementation details).

Even approximate max-product inference over our
model is intractable due to the high closure penalties, but
we can efficiently obtain “soft-max” likelihood estimates.
To do this, we combine the sum-product algorithm of Hes-
kes et al. [9] (based on the Kikuchi free energy) with the
mean field approximation suggested by Yuille [31] (raise
each factor to the 1

T , with T = 0.5 in our experiments).

4. Segmentation from Boundary Likelihoods

Given a soft boundary map, we can compute a hierarchi-
cal segmentation and threshold it to get the initial segmen-
tation for the next iteration. The hierarchical segmentation
is computed by iteratively merging regions with the mini-
mum boundary strength until no boundary is weaker than
the given threshold. We define the boundary strength be-
tween two regions as the maximum of (1) the value of the
strongest boundary between them (1 − P(e12 = 0|data));
and (2) a re-estimate of boundary strength computed when
new regions are formed. The first of these is the value from
our CRF inference. The second is computed by estimating
the boundary likelihood of newly formed regions based on
quickly computable cues (S1-S4, C1, R1-R5 in Table 1). By

incorporating this second estimate, we better handle cases
in which two distant regions are clearly different objects but
are separated by a set of weak boundaries (as in the case of
a slowly varying gradient). Our definition of total bound-
ary strength as the maximum of the two estimates ensures
that our merging metric is an ultrametric [1], guaranteeing
a true hierarchy. We threshold the hierarchy to provide our
next initial segmentation.

5. Implementation Details

We train and test our method on the Geometric Context
dataset [13], consisting of a wide variety of scenes including
beaches, fields, forests, hills, suburbs, and urban streets.

Assigning Ground Truth. To assign ground truth, we seg-
ment each image into thousands of regions, using water-
shed with Pb soft boundaries, and manually group them
into object regions, which could be discontinuous due to
occlusion. We then label the occlusion relationships of ad-
jacent regions. We assigned ground truth to 100 images:
50 for training and 50 for testing. Examples of the ground
truth can be seen in Figure 8. A medium-complexity image
will typically contain 10-15 objects according to our ground
truth labels.

Training. We estimate the unary (P(e1|data)) and condi-
tional (P(e1|e2, data)) boundary classifiers using a logistic
regression version of Adaboost [5], with 20 16-node deci-
sion trees as weak learners. This classification method pro-
vides good feature selection and probabilistic outputs. For
pairwise cues, we simply concatenate the unary cues (Ta-
ble 1) for the two boundaries and add cues for continuity
(relative angle of the two adjacent boundaries) and bound-
ary length (in pixels). Since cues such as depth and color
histograms become more useful in the later iterations of our
algorithm (with larger regions), we train separate classifiers
for the initial segmentations (about 4,400 regions per im-
age, on average) and for the segmentations obtained after
the first and second iterations (an average of roughly 300
and 100 regions per image, respectively).

In the first two iterations, we set the threshold for the hi-
erarchical segmentation to a conservative value correspond-
ing to an “acceptable” level of pixel error in the training set
(1.5%, 2%, respectively), as is typically done in object de-
tection cascade algorithms [29]. The threshold values are
0.105 and 0.25. For instance, in the first iteration, we merge
two regions if we are less than 10.5% confident that there is
an occlusion boundary between them. The threshold for the
remaining iterations can be set to reflect the desired trade-
off between the number of regions and how well the true ob-
ject regions are preserved (0.6 in our experiments). To train
the boundary classifiers after the first iteration, we transfer
the ground truth from the initial oversegmentations to the
current segmentations by labeling each region as the object
that occupies the largest percentage of its pixels.

In our experiments, we set the surface factor unary term
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Figure 6. Precision-recall curve for classifying whether a bound-
ary is an occlusion boundary in the first iteration. These results
show that 3D cues are important for occlusion reasoning.

by combining, in a linear logistic model, two likelihood es-
timates: (1) the multiple segmentation estimate from Hoiem
et al. [13]; and (2) an estimate using the same cues as (1)
but using the current segmentation from our occlusion al-
gorithm. The logistic weights (1.34, 0.16) were learned to
maximize likelihood of the training surface labels.
Inference. To evaluate a new image, we perform the algo-
rithm described in the previous sections, initializing with an
oversegmentation, and iteratively progressing toward our fi-
nal solution. In each iteration, we compute cues over the
current regions, compute boundary likelihoods in a CRF
model based on those cues, and create a new segmentation
by merging regions based on the boundary likelihoods. In
the first iteration, we restrict our CRF model to the unary
boundary likelihoods, since boundary and surface reason-
ing over the initial segmentation is ineffective and compu-
tationally expensive. In the second iteration, we expand our
model to include the full junction factor terms. In each ad-
ditional iteration, we perform inference over the full model.
The algorithm terminates when no regions are merged in
an iteration (typically after a total of 4 or 5 iterations). In
our Matlab implementation, our algorithm takes about four
minutes for a 600x800 image on a 64-bit 2.6GHz Athalon
running Linux, including about 70 seconds for Pb [17] and
about 25 seconds for the surface estimation algorithm [13].

6. Experiments
We quantitatively evaluate our method in terms of

boundary classification, figure/ground classification, and
overall segmentation accuracy on 50 test images. We also
provide several qualitative results, showing the recovered
object boundaries and estimated depth maps.
Boundary Classification. In Figure 6, we show the
precision-recall curve for detecting whether a boundary in
the initial oversegmentation is an occlusion boundary using
only Pb [17], after adding region and boundary cues, and us-
ing all cues. Our results show that the 3D cues are valuable

Edge/Region Cues + 3D Cues with CRF
Iter 1 58.7% 71.7% –
Iter 2 65.4% 75.6% 77.3%
Final 68.2% 77.1% 79.9%

Table 2. Figure/ground labeling accuracy results for using
edge/region cues only, all cues (including 3D cues), and after per-
forming inference using our CRF model (only unary likelihoods
were used in the first iteration).

for occlusion reasoning. In computing the precision and re-
call, boundaries are weighted by length in pixels. For the
Pb result, the precision-recall curve is generated by ranking
boundaries according to Pb confidence.

Figure/Ground Classification. In Table 2, we report the
figure/ground classification accuracy. Accuracy is com-
puted over all true occlusion boundaries, including those
which are incorrectly classified as non-boundaries in test-
ing. Our accuracy improves in each iteration, as increas-
ingly refined segmentations offer better spatial support for
occlusion reasoning. Our final accuracy of 79.9% is note-
worthy, considering that on the BSDS dataset [18] the al-
gorithm of Ren et al. [19] achieves figure/ground accuracy
of 78.3% using manual segmentations or 68.9% with auto-
matically computed boundaries. Our high accuracy is due to
our integrated reasoning over boundaries and 3D surfaces.

Overall Segmentation Accuracy. We measure the accu-
racy of a segmentation in terms of its “conservation” and
“efficiency”. We report conservation as the pixel error ac-
cording to the ground truth segmentation, and the efficiency
as log2

Nobjects−Nmissed

Nregions
. Here, Nobjects is the total num-

ber of objects, and Nmissed is the number of objects that
cannot be recovered from the current segmentation. The
difference is taken so that efficiency does not increase when
two ground truth objects are merged. We show a scatter plot
of the iteration 1, iteration 2, and final quantitative results in
Figure 7. Examples of ground truth and results, annotated
with conservation and efficiency scores, are shown in Fig-
ure 8. In Figure 9, we show results for a variety of other
images, together with estimated depth maps. See Section 2
for details on how we compute the depth maps from occlu-
sion and surface estimates. Our depth maps are not quan-
titatively accurate, since camera viewpoint and focal length
are unknown, but they give a good qualitative sense of the
depth of the scene.

To provide further validation, we compare segmentations
to two baseline methods: (1) connected components on the
most likely surface labels from Hoiem et al. [13]; and (2) a
recent version of the NCuts segmentation algorithm [6]. In
Table 3, we show that our algorithm achieves greater mean
conservation and efficiency than both of the others. Also,
only our algorithm provides figure/ground labels.

Object Pop Out. In Figure 10, we show a few examples of
regions automatically found by our system that could serve
as an initial stage for unsupervised object discovery [21].
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Figure 7. Scatter plot of “efficiency” vs. “conservation” for each
test image as the segmentations become increasingly coarse. A
perfect segmentation would have log2 efficiency of 0 and conser-
vation of 1.

Conservation log2 Efficiency
Our Algorithm 83.7% -0.8
Surface-Based 82.4% -1.4
Ncuts 81.7% -1.2

Table 3. We outperform segmentations using only surface labels
and an image-based normalized cuts algorithm [6] by using both
surface and image cues together with boundary reasoning.

7. Conclusions
We believe that we have made much progress on an ex-

tremely difficult problem that is crucial to scene understand-
ing. The key is to reason together about the segmentations
and figure/ground relationships, taking advantage of both
2D and inferred 3D cues in the image. Further progress can
be made by including object-specific information or by ex-
tending the current color and texture similarity measures to
more general measures of co-occurrence in natural scenes.
Acquisition of large training sets, ideally by automatic as-
signment of ground truth using stereo or video cues, would
allow large improvements through more effective learning.
We hope that our work inspires others to perform further re-
search on single-image occlusion reasoning and the broader
3D scene understanding problem.

References

[1] P. Arbelaez. Boundary extraction in natural images using
ultrametric contour maps. In Proc. POCV, 2006.

[2] I. Biederman. On the semantics of a glance at a scene. In
M. Kubovy and J. R. Pomerantz, editors, Perceptual Organi-
zation, chapter 8. 1981.

[3] M. J. Black and D. J. Fleet. Probabilistic detection and track-
ing of motion discontinuities. IJCV, 38(3):231–245, 2000.

[4] M. Clowes. On seeing things. Artificial Intelligence,
2(1):79–116, 1971.

[5] M. Collins, R. Schapire, and Y. Singer. Logistic regression,
adaboost and Bregman distances. Mach. Learn., 48(1), 2002.

[6] T. Cour, F. Benezit, and J. Shi. Spectral segmentation with
multiscale graph decomposition. In CVPR, 2005.

[7] J. Gibson. The perception of surface layout: A classification
of types. Unpublished “Purple Perils” essay, Nov 1968.

[8] A. Guzman. Computer recognition of three-dimensional ob-
jects in a visual scene. Tech. Rep. MAC-TR-59, MIT, 1968.

[9] T. Heskes, K. Albers, and B. Kappen. Approximate inference
and constrained optimization. In Proc. UAI, 2003.

[10] D. Hoiem. Seeing the World Behind the Image: Spatial Lay-
out for 3D Scene Understanding. PhD thesis, Robotics Insti-
tute, Carnegie Mellon University, August 2007.

[11] D. Hoiem, A. A. Efros, and M. Hebert. Automatic photo
pop-up. In ACM SIGGRAPH 2005.

[12] D. Hoiem, A. A. Efros, and M. Hebert. Putting objects in
perspective. In CVPR, 2006.

[13] D. Hoiem, A. A. Efros, and M. Hebert. Recovering surface
layout from an image. IJCV, 75(1):151–172, 2007.

[14] I. Jermyn and H. Ishikawa. Globally optimal regions
and boundaries as minimum ratio weight cycles. PAMI,
23(10):1075–1088, 2001.

[15] J.-F. Lalonde, D. Hoiem, A. A. Efros, C. Rother, J. Winn,
and A. Criminisi. Photo clip art. In ACM SIGGRAPH 2007.

[16] J. Malik. Interpreting line drawings of curved objects. IJCV,
1(1):73–103, 1987.

[17] D. Martin, C. Fowlkes, and J. Malik. Learning to find bright-
ness and texture boundaries in natural images. NIPS, 2002.

[18] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database
of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecologi-
cal statistics. In ICCV, 2001.

[19] X. Ren, C. C. Fowlkes, and J. Malik. Figure/ground assign-
ment in natural images. In ECCV, 2006.

[20] L. Roberts. Machine perception of 3-D solids. In OEOIP,
pages 159–197, 1965.

[21] B. C. Russell, A. A. Efros, J. Sivic, W. T. Freeman, and
A. Zisserman. Using multiple segmentations to discover ob-
jects and their extent in image collections. In CVPR, 2006.

[22] E. Saund. Logic and MRF circuitry for labeling occluding
and thinline visual contours. In NIPS. 2006.

[23] A. Saxena, S. Chung, and A. Y. Ng. Learning depth from
single monocular images. In NIPS, 2005.

[24] A. N. Stein, D. Hoiem, and M. Hebert. Learning to find
object boundaries using motion cues. In ICCV, 2007.

[25] E. Sudderth, A. Torralba, W. T. Freeman, and A. Wilsky.
Depth from familiar objects: A hierarchical model for 3D
scenes. In CVPR, 2006.

[26] K. Sugihara. An algebraic approach to the shape-from-
image-problem. Artificial Intelligence, 23:59–95, 1984.

[27] A. Torralba. Contextual priming for object detection. IJCV,
53(2), 2003.

[28] R. Vaillant and O. Faugeras. Using extremal boundaries for
3D object modeling. PAMI, 14(2):157–173, February 1992.

[29] P. Viola and M. J. Jones. Robust real-time face detection.
IJCV, 57(2), 2004.

[30] D. L. Waltz. Understanding line drawings of scenes with
shadows. In P. Winston, editor, The Psychology of Computer
Vision, pages 19–91. McGraw-Hill, New York, 1975.

[31] A. L. Yuille. CCCP algorithms to minimize the Bethe and
Kikuchi free energies: convergent alternatives to belief prop-
agation. Neural Comp., 14(7), 2002.



Ground Truth Result Ground Truth Result

Figure 8. Ground truth and final occlusion boundary results (see Figure 9 for legend). From top-left clockwise, the efficiency and conser-
vation values are (-0.22, 0.95), (-1.59, 0.93), (0, 0.68), (-0.35, 0.54). The lower-left image is the result with the lowest pixel accuracy out
of the test images with ground truth.

Figure 9. Examples of boundary and depth map results. Blue lines denote occlusion boundary estimates, arrows indicate which region
(left) is in front, and black hatch marks show where an object is thought to contact the ground. On the right, we display the minimum and
maximum depth estimates (red = close, blue = far).

Figure 10. Object popout. We show five out of the fifteen most “solid” regions in the Geometric Context dataset. Our algorithm often finds
foreground objects, which would be helpful for unsupervised object discovery [21].


