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Abstract Scene understanding requires reasoning about
both what we can see and what is occluded. We offer a simple
and general approach to infer labels of occluded background
regions. Our approach incorporates estimates of visible sur-
rounding background, detected objects, and shape priors
from transferred training regions. We demonstrate the abil-
ity to infer the labels of occluded background regions in
three datasets: the outdoor StreetScenes dataset, IndoorScene
dataset and SUN09 dataset, all using the same approach. Fur-
thermore, the proposed approach is extended to 3D space
to find layered support surfaces in RGB-Depth scenes. Our
experiments and analysis show that our method outperforms
competent baselines.

Keywords Scene understanding · Image parsing ·
Geometric layout · RGB-depth

1 Introduction

Semantic scene labeling is most often viewed as the problem
of labeling pixels according to the depicted object category.
If done accurately, such representations provide a good sense
of what objects and surfaces are visible. But the goal of vision
is to provide information about the entire surroundings, not
just what is in the line of sight. Consider the images in Fig. 1.
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We humans have a strong sense of the locations and extents
of the sidewalks, roads, and buildings, even though many of
them are largely or even fully occluded. However, if we stick
to what we can actually see, huge portions of the scene are
unknowable.

In this paper, our goal is to label both visible and occluded
regions into background categories. For example, a car pixel
should be labeled as “road”, “sidewalk”, or “building”,
depending on what is behind it. A few recent efforts have been
made in this direction, applying strong domain-specific pri-
ors and constraints to enable inference of occluded regions.
For example, Geiger et al. (2011) infer the full road layout
from video, and Hedau et al. (2009) and follow-up works
infer the full extent of the floor from an image. We are seek-
ing a more general approach that would work for a variety
of scenes, both indoor and outdoor, without hand-defined
priors. Such a general approach could be used as a default
system and adapted to particular domains where appropriate.

We incorporate three basic types of information. First,
we classify visible background regions. An occluded patch
that is surrounded by road, for example, is more likely to
be road. Second, we classify visible foreground regions and
apply object detectors to localize common objects, such as
cars and pedestrians. Location of foreground objects is pre-
dictive of background regions. For example, cars are often on
the road, and people are often on sidewalks. After obtaining
label confidences for the visible regions and object bound-
ing boxes, we predict the complete underlying labels with
a feedforward contextual classifier, in the spirit of Tu and
Bai’s autocontext (Tu and Bai 2010). Third, we incorporate
global scene priors and region shape priors from training
images. Often, researchers consider background to be shape-
less regions defined by object occlusions, but when we infer
the underlying surfaces, their inherent structure remains. For
example, sidewalks and roads have characteristic patterns;
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Fig. 1 Motivation Scene parsing is often viewed as a problem of label-
ing pixels into visible categories. But these representations leave much
of the underlying scene unknowable. For example, because the woman
(top row) is occluded, we cannot determine what she is standing on
without inferring that the bicycles are occluding the sidewalk. Likewise,
finding paths through cluttered scenes is nearly impossible without rea-

soning about the underlying surfaces. Below, we project the ground into
an overhead view (yellow = sidewalk; green = road; red = blocked by
building or trees; gray = unknown). Without more complete estimates
of the background, huge portions of the scene are left unknown (Color
figure online)

trees have complex shapes; walls have simple quadrilateral
shapes. We use these priors without explicitly defining them,
by copying whole polygonal regions from the training set
that match our scene according to current likelihood esti-
mates. The transferred regions can then be used to improve
label estimates, and they also provide a more structured scene
representation in terms of a few polygons.

To demonstrate the generality of our approach, we perform
experiments on the CBCL StreetScenes dataset (Bileschi
2006), Hedau et al. (2009)’s indoor scene dataset as well
as the more diverse SUN09 dataset (Choi et al. 2010). Each
dataset has polygonal labels that can be used to evaluate iden-
tification of visible surfaces (as is usually done) or labeling
of underlying surfaces (as is our interest). We show that our
approach outperforms competent baselines such as classifi-
cation into visible regions and filling in occluded background
regions using nearest visible labels or pixel-wise MRF solved
with graph cuts. To analyze different components of the algo-
rithm, we studied the performance with respect to different
parameters of the feed-forward procedure. The transferred
polygons can be seen as a guess of the configuration of scene,
and thus provide more structured understanding than pure
pixel label predictions. To analyze the performance of such
polygon prediction, we treat the problem as a polygon detec-
tion problem, evaluating how much of the polygons have been
correctly predicted based on intersection over union criteria.
So far, our representation encodes only a single background

layer, projected onto the image plane. In Sect. 4, we describe
an extension to multiple layers accounting for 3D geometry,
predicting layered support surfaces in an overhead view in
RGB-D images. Earlier versions of this work were described
in Guo and Hoiem (2012, 2013).

1.1 Related Work

1.1.1 Pixel Labeling

Pixel labeling problems are nearly always posed as the
assignment of labels for the depicted objects or surfaces,
as can be seen in the most widely used datasets such as
MSRC21 (Shotton et al. 2006), Pascal VOC Segmenta-
tion (Everingham et al. 2008), SUN’09 (Choi et al. 2010),
Geometric Context (Hoiem et al. 2007), CamVid (Brostow
et al. 2008), and the Stanford Background Dataset (Gould et
al. 2009). Even methods that are focused on scene geome-
try, such as Hoiem et al.’s surface layout (Hoiem et al. 2007)
are restricted to labeling visible surfaces. Notable exceptions
include recently proposed indoor scene datasets (Lee et al.
2009; Hedau et al. 2009), Geiger et al.’s work (Geiger et
al. 2011) to infer the upcoming road plan from a vehicle-
mounted video camera, and Gupta et al.’s blocks world revis-
ited (Gupta et al. 2010). These approaches regularize visible
evidence with simplified models and geometric priors that
are suitable for a particular type of scene or application.
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We benefit from current methods to label visible fore-
ground and background surfaces. In particular, we use the
generic region classifier made available by Hoiem et al.
(2007). In contrast to existing work on inferring complete
scene layout, we aim to develop a general approach that
can be applied to a wide variety of problems. Although our
problem definition is not the usual, we can use some exist-
ing datasets. People often find it easier to label background
regions with polygons that cover the entire surface, rather
than drawing around occluding objects. This is one reason
that datasets such as LabelMe (Russell et al. 2005) and CBCL
StreetScenes (Bileschi 2006) instruct labelers to draw poly-
gons around the entire background region, ignoring occlud-
ers. In fact, Bileschi’s thesis (Bileschi 2006) reports that
labelers often want to label portions of objects, such as tree
trunks that cannot be seen at all. It is difficult for people not
to see beyond their line of sight. Usually, these datasets “flat-
ten” the label map based on figure/ground ordering, assigning
each pixel to one label. We define our task based on the orig-
inal polygons, predicting, for example, the building pixels
that are occluded by a car.

1.1.2 Contextual Methods

Many contextual methods have been developed, most often
to aid the recognition of “things”, such as cars or pedestri-
ans. We build closely on Tu and Bai’s auto-context (Tu and
Bai 2010), a feedforward mechanism for iteratively classi-
fying a pixel given its features and the current confidences
of surrounding pixels. Given initial confidence maps created
by our region classifiers and object detectors, we iteratively
re-classify each pixel into a background label. In the orig-
inal auto-context framework, target labels were consistent
throughout the process. In our case, we start with confidences
for visible surfaces and objects and use them to iteratively
re-predict confidences for both visible and occluded regions.
A variety of other feed-forward contextual approaches have
been reported in the literature (e.g., Li et al. 2010; Hoiem et
al. 2008; Gould et al. 2008). We favor auto-context approach
for its simplicity, efficiency, flexibility, and intuitive behavior
as a form of belief propagation in an MRF (Tu and Bai 2010;
Ross et al. 2011).

1.1.3 Region-Transfer Methods

After we infer as much as possible from visible surfaces and
objects, we incorporate global scene priors and shape priors
by matching our confidence maps to the labeled ground truth
of training images. In this, we relate to several region-transfer
methods, such as Maliesiwicz and Efros’ visual memex (Mal-
isiewicz and Efros 2009), Tighe and Lazebnik’s superpars-
ing (Tighe and Lazebnik 2010), and other label transfer
methods by Liu et al. (2011) and Zhang et al. (2010). Our

method differs from some in that we match purely between
our predictions and training ground truth (without consider-
ing appearance), so that we are transferring a layout prior,
rather than using matched regions as the primary cues for
labeling. Our transfer method differs from Liu et al. (2011)
and Zhang et al. (2010) in its simplicity: we simply copy
regions in-place, either from one or several training images
whose scene-wide labels match well. In some applications,
deforming transferred regions may be advantageous, but in
our experiments, limiting deformation helped to preserve the
original scene layout priors.

1.1.4 Applications

Many applications can be derived from understanding the
portion of the scene that is not directly visible. Isola and
Liu (2013) are interested in composing a scene with the
right depth ordering using the a collection of un-occluded
polygons, which can be used in scene synthesis and image
editing. Silberman et al. (2014) propose a method for find-
ing the complete extent of 3D surfaces, and created an
augmented reality application with the completed surfaces.
Recently, Khosla et al. (2014) proposed to find places when
they are not visible in the scene. For example, they can pre-
dict if there is a Starbucks nearby using visual features even
if there is not a Starbucks in sight.

1.2 Contributions

Our primary contribution is a general approach to infer
underlying surfaces based on estimates of visible surfaces,
detected objects, and non-parametric priors on scene lay-
out. Our approach incorporates existing techniques, such as
region classification (Hoiem et al. 2007), feed-forward con-
textual prediction (Tu and Bai 2010), and non-parametric
label transfer (Liu et al. 2011), but it is simple, efficient,
and generally applicable. We expect that contextual recog-
nition algorithms and domain-specific scene layout algo-
rithms would benefit from having our more complete scene
layout estimates as a starting point for more complex
reasoning.

2 Labeling the Complete Scene Surfaces

We summarize the process to estimate complete scene layout
in Fig. 2. We first label the visible part of the scene, using
an off-the-shelf image labeling algorithm and pre-trained
object detectors. We then incorporate visible information into
a feed-forward contextual prediction to infer the occluded
part of the background regions. Next, polygons are matched
based on the current label confidences to provide a shape prior
for each label. The final pixel prediction incorporates visible
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Fig. 2 Given an input image, we predict the labels of visible fore-
ground and background surfaces and estimate object locations using
detectors. We then apply a feed-forward contextual method to infer the
labels of occluded background regions. We transfer training regions that

match current estimates and use them to provide a structured hypothesis
and a shape prior which is used to refine the background pixel labels
(Color figure online)

surface predictions and the transferred polygons to provide
the final complete background labeling.

It is an interesting problem whether we can automatically
determine which categories are foreground and which cat-
egories are background. However, we feel that the defini-
tion of background and foreground categories can sometimes
be ambiguous without the ground truth depth ordering. For
simplicity, we define foreground and background categories
by hand. For example, on the StreetScene dataset, “build-
ing”, “road”, “sidewalk”,“sky”,“store” and “tree” are defined
as background, and “car”, “pedestrian”, “bicycle” are fore-
ground. In Sect. 4, we present the RGB-D extension of our
algorithm, in which the extent of support surfaces are multi-
layered, and their ordering is determined bytheir heights.

2.1 Labeling Visible Surfaces and Objects

We apply the region classifier from (Hoiem et al. 2007) to
label pixels into visible foreground and background regions.
The image is first over-segmented into superpixels, which
are then grouped into multiple segmentations. Color, texture,
edge, and vanishing point cues are then computed for each
superpixel. Finally a boosted decision tree classifier com-
bines the prediction and estimates the likelihood of each
possible label for each pixel, providing a confidence map
for each label.

This algorithm is designed to parse geometric classes and
works well for background regions such as building, road
and trees, outperforming a more recent algorithm on these
classes (Tighe and Lazebnik 2010). We use Felzenswalb et
al.’s pre-trained object detector (Felzenszwalb et al. 2009) to
detect foreground objects such as “cars” and “pedestrians”.
For each category, we convert the detection bounding boxes
to a detection confidence map, where the value of each pixel
is set to the maximum of the scores of the detection win-
dow that contains that pixel. We use both the background
parsing results and detection confidence map as input to our
contextual algorithm. The features maps are visualized in the
second graph from the left in Fig. 1.

2.2 Using Context to Infer Labels of Hidden Surfaces

We base our approach to infer background labels of occluded
pixels on the auto-context framework. In the original auto-
context paper (Tu and Bai 2010), the algorithm starts by
learning an appearance classifier using image patch features
and a boosting algorithm. After applying the trained classi-
fier, the confidence map is then fed as contextual information
to train the next classifier. The surrounding label confidences
of a pixel are used as features to construct a new training fea-
ture set. A new boosted classifier based on the training set
is learned and it, in turn, updates the confidence map. The
algorithm iterates this process, improving the ground truth
likelihood of training labels in each iteration.

We use the same feed-forward idea, which is illustrated in
Algorithm 1. However, rather than using appearance features
(which would only describe the visible surfaces), we instead
directly rely on the outputs of our region classifier and object
detectors. As suggested in Tu and Bai (2010), we sample the
contextual features in the form of sparse, radially distributed
points. We use logistic regression for classification instead
of boosting as our classifier so that feature computation and
applying the classifier can be done by 2D convolution opera-
tions and linear additions over the whole image. This allows
us to reduce the testing time to under 1 s per image (400×300
pixels), whereas the original algorithm runs at 30–70 s on a
300 × 200 image.

Due to its discriminative training, auto-context can go
beyond simple smoothing. For example, in Fig. 3, auto-
context can recover the sidewalk region by looking at the
prediction of nearby pixels: if there is building on top of
it and road below it, then it is more likely to be sidewalk.
An initially missed sidewalk region is recovered after three
iterations of auto-context.

2.3 Region Overlay as a Scene and Shape Prior

Intuitively, the overall pattern of labels should be similar to
other images observed in the training set, and the pattern of

123



176 Int J Comput Vis (2015) 112:172–187

Algorithm 1  Outline of our full algorithm. We use two types of features: (1) visible parsing results, (2) object 
detection. Then, we apply our major intuitions: spatial contexts and retrieved shape prior are combined to infer 
the complete label map and the polygonal layout

a particular type of label is likely to match some training
image quite closely. We operationalize this intuition by find-
ing polygons in the training set that match our current label
predictions. These polygons provide a scene prior (because
the training image that they come from should have simi-
lar labels overall) and a shape prior (because the transferred
region maintains its shape). The transferred regions can be
used to refine our per-pixel background labels, and the set of
transferred regions provide alternative coherent yet compact
hypotheses about the hidden portions of the scene.

We find polygons for the each background class separately
using the intersection over union criteria. From the previous
steps, for each query image k we computed probability map
of the background label l as Pl,k . We then find the best-
matching polygons and directly lay them down as our region
prediction for image k, label l.

The ground truth mask of background label l in training
image i is Gl,i , where Gl,i,x = 1 if pixel x of image i is of the
label l in the ground truth annotation and 0 otherwise. Then
the fitting score of image i’s polygons to Pl,k is defined as:

Score(Gl,i,Pl,k) =
∑

x min(Gl,i,x , Pl,k,x )
∑

x max(Gl,i,x , Pl,k,x )

This can be interpreted as a weighted version of region
overlap score for two polygons. For each class l, we
select the top image i from the training images set whose
matching score is highest for query image k and is bigger
than a threshold t = 0.3.

Similarly, we define global matching score as:

Score(Gi,Pk) =
∑

l
∑

x min(Gl,i,x , Pl,k,x )
∑

l
∑

x max(Gl,i,x , Pl,k,x )

To preserve global layout similarity, we only consider
matching polygons whose image global matching scores
Score(Gi ,Pk) are among the highest R = 200 images.

The most confident set of retrieved polygons provides our
best guess of the configuration of the scene. Similarly, the
set of second most confident polygons provides an alterna-
tive “guess”. We show those guesses in the third and fourth
column of our qualitative results (Sect. 3.5).

123



Int J Comput Vis (2015) 112:172–187 177

(a) (b)

(c) (d) (e)

(f) (g) (h) (i)

Fig. 3 Illustration of baseline methods. a shows the original image
and b gives the parsing map of the visible part; c–e Baseline methods
do not go beyond smoothing. f and g shows that incorporating context
using classifier does more than a smoothing term, recovering the some

sidewalk area. After polygons are retrieved, the flattened shape prior
(h) helps to regularize the layout and gives final output (i) (Color figure
online)

The polygon prediction provides a shape prior for back-
ground surfaces. Also, the polygons provide a more struc-
tured representation than pixels, enabling a connected set of
building pixels to be represented as two separate buildings or
a set of road pixels as a single road. In this way, the predicted
polygons better reflect the worlds structure and may be useful
for further inference. Multiple guesses for polygonal layout
enable reasoning about uncertainty while representing whole
surfaces.

2.4 Baselines

Other general-purpose methods to infer labels of occluded
regions do not exist in the literature, so we provide several
baselines. Each method attempts to predict the labels of the
underlying surfaces, given the label confidences for the vis-
ible surfaces.

Most confident background assigns each foreground
pixel to the most confident background label.

Nearest method assigns occluded background pixels to
the nearest (in image location) visible background pixel.

Graph-Cut implements a pixel-wise MRF, which is often
used in post-processing stage of semantic segmentation.
The setup of the MRF is similar to that of Shotton et

al. (2006), where each pixel is represented a node in the
graph. The unary term contains the log probability that a
pixel x of a query image k has background class label l:
ψunar y(x, l) = log P(l; x) = log Pl,k,x directly from the
output of our visible parser. The pairwise term enforces
contrast-sensitive boundaries in the visible regions and uni-
form smoothing in occluded regions for adjacent pixels x1

and x2:

ψpairwise(x1, x2, l1, l2) = 1(l1 �= l2)log

[

λ1 P(occ|x1)

+λ2(1 − P(occ|x1))e
(I (x1)−I (x2))

2)

σ2

]

where P(occ|x1) is probability that x1 is occluded by the
foreground region. σ is a parameter that controls the amount
of smoothing.λ1 andλ2 modulate how much label smoothing
we want for visible and occluded portions of the image. We
use alpha-beta swaps (Kolmogorov and Zabih 2004) to solve
the MRF.

3 Experiments

We show both quantitative and qualitative results for predict-
ing scene layout on three different datasets, StreetScenes,
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Table 1 This table shows our result compares favorably to the base-
lines. The “Most Confident”, “Nearest” and “Graphcut” are based on the
confidence maps of training the classifier of Hoiem et al. The SuperPars-
ing results shown are produced in the Most Confident fashion. Using
Nearest or GraphCut on SuperParsing results yields similar performance

Method Complete Occluded Visible

Most Confident 0.795 0.601 0.810

Nearest 0.798 0.619 0.812

Graphcut 0.803 0.615 0.818

Ours 0.833 0.715 0.843

Superparsing 0.775 0.453 0.800

Pixel accuracy on StreetScene dataset

The best result is in bold

IndoorScenes and SUN09. We evaluate the pixel labeling
accuracy of the background categories on all three datasets.
For each experiment, we use 3 iterations of feed-forward
training. The ground truth pixel map is created with only
complete background classes, as if the foreground objects are
not there. Unlabeled regions in the ground truth are ignored
for evaluation. Our pixel accuracy is reported as the average
pixel accuracy over images.

3.1 StreetScenes

The StreetScenes dataset consists of 3547 high quality
images of urban environments, in which 710 images are for
testing. The dataset is hand-annotated with polygonal, com-
plete region labels. In this dataset, background classes as
“road” and “sidewalk” are often heavily occluded by fore-
ground objects like “car” and “pedestrian”.

All three baselines described in Sect. 2.4 are tested on this
dataset and provide very similar performance (Table 1). Most
Confident and Nearest baselines methods leave the pixels pre-
dicted as background intact; they cannot correct any mistakes
on the visible part of the scene. The Nearest method mainly
works if the visible prediction is smooth and correct, but the
method fails when the visible prediction is cluttered. Notice
that Graphcut also made almost no improvement compared
to Most Confident, because it does not go beyond smoothing
the label map. As shown on Fig. 3e, Graphcut smooths out the
sidewalk region just like the other two baselines. However,
using the feed forward discriminative learning approach, the
sidewalk is correctly recovered. We also tested SuperPars-
ing (Tighe and Lazebnik 2010), which performs similarly
with the baseline methods on the visible part, but poorly on
occluded regions, because it depends heavily on local visible
features. Our full system outperforms all baselines, eliminat-
ing 18 % of the error from the Most Confident method. We
evaluated the effectiveness of different components of our
system in Table 2.

Table 2 Explores the effectiveness of individual component in our
framework, also on StreetScene dataset. “Shape Prior Only” correspond
to the pixel map of the best polygonal layout guess, as shown in Fig. 3h.
“Ours, w/o Shape Prior” has everything except transferring shape prior.
“Ours, w/o Detection” uses everything except object detection cues

Method Complete Occluded Visible

Most Confident 0.795 0.601 0.810

Shape Prior Only 0.818 0.713 0.826

Ours, w/o Shape Prior 0.832 0.705 0.842

Ours, w/o Detection 0.831 0.705 0.841

Ours, Full 0.833 0.715 0.843

The effectiveness of different cues of our framework

The best result is in bold

Table 3 Overall accuracy on testing set of IndoorScenes dataset: our
method greatly helped occluded part of the scene, and made slight
improvement on the visible portion

Method Complete Scene Occluded Visible

Most Confident 0.700 0.658 0.710

Ours 0.739 0.729 0.742

Hedau et al. (2009) 0.796 0.698 0.821

Pixel accuracy on IndoorScenes

Table 4 Overall accuracy on testing set of SUN09 dataset: our method
greatly helped occluded part of the scene, and made slight improvement
on the visible portion

Method Complete Scene Occluded Visible

Most Confident 0.639 0.498 0.665

Ours 0.691 0.661 0.695

Pixel accuracy on SUN09

3.2 IndoorScene dataset

The IndoorScene dataset has 308 indoor images with 5
ground truth layout surfaces, annotated also in polygons:
floor, left wall, middle wall, right wall, and ceiling. The chal-
lenge in the IndoorScene dataset is that the foreground “clut-
ter” such as furniture occludes background regions.

One adaption we made for this dataset is that we trans-
fer polygons all from one image to the query image instead
of transferring from different images so that the box sur-
faces agree on geometry with each other in the final pre-
diction. For evaluation, we compare to the original base-
line, the confidence map trained using Geometric Con-
text classifier. Our method increases the labeling overall by
3.9 % (Table 3). For the occluded region, the pixel accu-
racy was improved from 65.8 to 72.9 %. Hedau et al.’s
method (Hedau et al. 2009) was specifically designed for
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(a) (b) (c)

(f)(e)(d)

Fig. 4 Per-class pixel accuracy on all 3 datasets we experimented
with. Note that there is no number on “ceiling” for occluded
IndoorScene dataset because they are never occluded. For SUN09,
our biggest improvement comes from background classes that are

often occluded, such as wall, floor and road. a StreetScenes (com-
plete), b IndoorScenes (complete), c SUN09 (complete), d StreetScenes
(occluded), e IndoorScenes (occluded), f SUN09 (occluded) (Color fig-
ure online)

Fig. 5 The evolution of the probability map of semantic labels in
StreetScene dataset. The original feature map has missing portion
because of foreground occlusions. After three iterations of feed-forward

contextual inference, the missing part is filled. Finally, adding the shape
prior improves the coherence of the estimates

this task and incorporates vanishing point estimates, and
obtained 79.6 % on overall accuracy. However, we out-
perform them on the occluded portion of the scene by
3.1 %.

3.3 SUN09 Dataset

We use the subset of 8684 images from the SUN09 dataset,
containing both indoor and outdoor images. We manu-
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Fig. 6 Qualitative results on street scenes Left to right ground truth;
labeling into visible surfaces and detected objects; labeling of com-
pleted surfaces with first polygon guess; same labeling with second
polygon guess. In each image, the region colors indicate pixel labels.
The polygons in the right two columns indicate the transferred regions,

representing different hypotheses about individual structures. For exam-
ple, top row red polygons indicate the possibility that the building region
is composed of one building or two. Bottom row sidewalk is incorrectly
hallucinated to cross the road. Note that our system is often able to infer
sidewalk regions that are nearly fully occluded (Color figure online)
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Fig. 7 Qualitative results on Indoor dataset: Left to right: ground
truth; labeling into visible surfaces; labeling of completed surfaces
with first polygon guess; same labeling with second polygon guess.
In each image, the region colors indicate pixel labels. We can infer
the room structure using the same process as for outdoor scenes.

Although our method does not outperform Hedau et al.’s domain-
specific method (Hedau et al. 2009) that incorporates strong geometric
priors, our method does outperform the initial surface labeler used by
them (Color figure online)

ally cleaned up the tags, among which “vehicle”, “chair”,
“people” and “object” are foreground; “building”, “ceil-
ing”, “floor”, “ground”, “field”, “road”, “sky”, “tree”, “wall”,
“water” and “sidewalk” are background. The overall pixel
accuracy are reported Table 4. Similarly to the previous two
experiments, we see significant improvement on occluded
regions (from 49.8 to 66.1 %) and modest increase on the
visible regions.

3.4 Details

In the StreetScene dataset, 7.8 % of the pixels are occluded.
IndoorScene and SUN09 has 23.1 and 15.5 %, respectively.
In our experimental setting, we use a template with a radius
of 49 and images are resized to 400 × 300. Each iteration
of auto-contexts takes 0.1 s on a single CPU core while the
shape retrieval takes 2 s with 17022 exemplar polygons. We
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Fig. 8 Qualitative results on SUN09 dataset Left to right: ground
truth; labeling into visible surfaces; labeling of completed surfaces with
first polygon guess; same labeling with second polygon guess. In each

image, the region colors indicate pixel labels. SUN09 features a variety
of both indoor and outdoor images, and a broader range of foreground
and background labels (Color figure online)

also studied the performance of our system with respect to
different background region categories, shown in Fig. 4. On
StreetScene dataset, the performance boost comes from the
categories of road and sidewalk, which are often occluded
by pedestrians and cars. On SUN09, the gain comes from

floor, walls and roads, which suffer the most from foreground
occlusions. Most of the performance gain is due to the use
of context. The polygonal shape prior has better accuracy on
occluded portion but does not improve the labeling of visible
portions, as shown Fig. 5.
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3.5 Qualitative Results

We show qualitative results from the StreetScenes (Fig. 6),
IndoorScene dataset (Fig. 7) and SUN09 dataset (Fig. 8).
We first show our visible surfaces and detected objects. The
gray area indicates background regions occluded by the fore-
ground objects. Then using feed-forward inference, the miss-
ing background regions are completed, and then polygons
are fit to those regions creating complete polygonal layout
proposals. Finally those polygons are used as shape prior to
refine the pixel labels.

3.6 Analysis of Contextual Inference

In this section, we examine design decisions we make in the
proposed algorithm. Specifically, we want to understand how
the performance changes with respect to different parameters
in our feed-forward inference. The main parameters of the
inference procedure described in this paper are (1) the tem-
plate it uses, and (2) the number of iterations. With larger
templates, we consider a bigger neighborhood and therefore
capture longer-range spatially varying interactions of seman-
tic labels. More iterations help the label prediction to con-
verge. However, they also mean a higher computation cost,
which grows linearly with the template size and the number
of iterations.

In Fig. 9, we show the performance of the feed-forward
procedure with respect to different template size and iteration
numbers. Overall, the procedure converges within less than
5 iterations. When the template is small (under the radius of
10 pixels), the performance does not change much after just
two iterations. The impact of iterations increases when the
template is bigger, but the most improvement comes from
the first few iterations. The template size on the other hand
makes a huge difference. The improvement on pixel accuracy
is 2.1 % when the radius of the template is 1 (thus 3 × 3
template, blue line in Fig. 9). However it becomes 5.7 %
as the template increase to the radius of 169 (gray line in
Fig. 9), almost a three-fold improvement. The accuracy gain
on the occluded part is 4.0 and 18.2 % on the occluded part
for template of radius 1 and 169, respectively.

It is interesting that the performance gain keeps increas-
ing with the template size, until the template increases to
the size of whole image. This confirms our intuition that we
need to consider long-range interactions: the bigger the size
of the template, the better the results. And the big template
gives the algorithm an advantage to the pixel-wise MRFs
with non spatially varying weights, such as the GraphCut
baseline described in Sect. 2.4.

Our feed-forward procedure is more efficient than the
original auto-context in Tu and Bai (2010), because it does
not do “auto” feature selection. We tried to use differ-
ent template configurations, instead of a rigid, ray-shape
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Fig. 9 The performance change on the StreetScene dataset with respect
to the parameters. 1 template size and 2 number of iterations, on both
the overall and the occluded portion of the scene. In both cases, the
performance increases as the template becomes larger, until the radius
become 169 pixels, for a total diameter of 339 pixels, nearly covering
the 400 × 300 image (Color figure online)

template. We sampled the templates from 2D Gaussian,
Laplacian or triangle distributions to produce a randomized
template and then cross-validate for the best-performing one.
However, we found it does not yield noticeable improvement,
and thus decided to keep things simple by using a ray-shape
template. The other concern is the computation speed. For
consistency and speed reasons, we use a template with the
radius of 49 and 3 iterations in all our previous results.

3.7 Scene Understanding as Polygon Detections

The shape matching procedure can give us both the shape
prior of the scene and the transferred polygons, which make
up possible configuration of the scene. Predicting polygons is
by itself an interesting way to understand scenes. Compared
to bounding boxes, polygons are more expressive and can
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(a)

(b)

Fig. 10 Evaluation of polygon detection. a Precision-Recall curve of
polygon detections in the StreetScene dataset, similar to the way bound-
ing box detections are evaluated. b Highest possible recall versus the

number of polygon proposals. With more proposals, it is more likely
that we detect the right object polygons

(a) (b)

Fig. 11 Extension to RGB-D surfaces. a Adapting auto-context in 3D
surface extent prediction: we consider the previous predictions of sur-
faces in the scenes all as feature maps b Shape matching in 3D: we

compute the score of template matching based on the overlap, with
positive score with the high probability area and negative scores on
freespace (Color figure online)

represent a greater variety of shapes. Compare to pixel label-
ing, polygons are more structured because they are closer to
human annotation/understanding and respect the shape reg-
ularity of individual entities. For example, a bunch of con-
nected tree pixels can be one big tree or a row of trees. How-
ever, pixel labeling cannot tell the difference between them
while polygonal representation can.

We follow the evaluation paradigm as in PASCAL object
detection challenge (Everingham et al. 2008): a polygon

detection is considered as correct if the intersection-over-
union (IOU) score is over 0.5, and multiple detections are
penalized. Note that this is a stricter criteria than IOU of
bounding boxes, since regions can be of more flexible shapes.

On StreetScene dataset, the first guess of configuration has
3.41 polygons on average while the ground truth annotation
has 3.33 polygons on average. We report the Precision-Recall
curve in Fig. 10a. Note that the performance is very high for
categories of “road” and “buildings”, since they are often
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large and continuous in outdoor scenes. “Trees” and “side-
walk”, however, are usually separated and small, and thus
0.5 IOU becomes a harsh creteria for these categories. We
also show the plot of recall versus the number of polygon
layout we guess (Fig.10b). With increasing number of poly-
gons proposals, the chance of detecting individual polygons
become larger. We want to note that this is still a very sim-
ple baseline which does not consider diversity of proposals
or the consistency between polygons. The proposed polygon
may also have small overlap, but this does not usually hap-
pen because it is implicitly penalized through the matching
procedure with probability map.

4 Extension to Modeling Overlapping 3D Surfaces

One limitation of our algorithm is that it works in 2D image
plane and therefore it is possible that the polygons we produce
do not agree in terms of viewpoint and geometry. Therefore
we extend our inference into 3D space and work with RGB-D
data. We propose a similar algorithm to find complete extent
of surfaces in 3D scenes. We define support surfaces to be
horizontal, planar surfaces that can physically support objects
and humans. Given a RGB-D image, our goal is to localize
the height and full extent of such surfaces in 3D space. First,
we align the room with the dominate directions of the sur-
faces and then detect the the heights where support surfaces
occur. Next, we formulate problem of finding the complete
extent of support surfaces as parsing in the overhead view
of the indoor scene. To this end, we adapt our current 2D
approach to 3D space, by making two modifications: (1) use
3D features instead of 2D features (2) allow objects to trans-
late and shift when doing the shape matching. Finally the
predict support surface extent is evaluated against the man-
ually annotated 3D models (Guo and Hoiem 2013) of the
NYUv2 dataset (Silberman et al. 2012).

4.1 Approach

First, we label visible pixels into “floor”, “wall”, “ceiling”
and “object” using the RGBD region classifier from Silber-
man et al. (2012) and then project these pixels into an over-
head view using the depth signal, based on the same scene
rotation matrix found in previous section. We then predict
which heights are likely to contain a support surface based on
a variety of 2D and 3D features. This includes (1) observed
upward planar surfaces, (2) observed geometric labels, (3)
edgemap, (4) voxel occupancy, (5) volumetric difference,
(6) support height prior, (7) relative location prior. We refer
the readers to the original paper (Guo and Hoiem 2013) for
details on the 3D features.

When predicting support heights, the features are aggre-
gated, followed by SVM classification and non maximum

Fig. 12 Quantitative evaluation on support surface prediction. a PR
curve of support extent prediction with and without auto-context, and
the baseline accuracy. b Prediction on visible and occluded portion of
the surface extent (Color figure online)

suppression. For extent prediction, the above feature maps
are used and the iterative prediction procedure is applied. In
addition to the previous predictions of the current plane, we
also look at the prediction of support planes above and below
it. The parameters of the feed-forward contexts used here is
the same as the in the 2D cases: 3 iterations and 49 radius.
The procedure of the inference is shown in Fig. 11. As in the
case of 2D labeling, template matching can also serve to help.
This time, we want to modify the matching procedure so as
to allow translation and is done through FFT. Essentially, we
want to encourage the template to overlap with high proba-
bility area in the probability map and penalizes the overlap
with the free space, as illustrated in Fig. 11.

4.2 Evaluation

Support heights and extent can be naturally extracted from
the 3D scene annotations in Guo and Hoiem (2013). To make
evaluation less sensitive to noise in localization, we make the
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Fig. 13 Overhead visualization. Green and blue and red areas are esti-
mated walls, floor and support surfaces respectively. The brighter col-
ors of support surfaces indicate higher vertical heights relative to the
floor. Dark areas are out of the field of view. The first and second col-
umn show in the original scene and its corresponding ground truth sup-

port surfaces. The third column shows our final prediction, by thresh-
olding the probability map at the threshold which correspond to 0.5
recall. The fourth column shows the most confidently matched surface
configuration (Color figure online)

area around boundary of support surface within a thickness
of ε to be “don’t care”. ε is empirical error of Kinect over
the dataset, which is set to 0.15 m. We also do not evaluate
the area that is out of the field of view. In all, there are 5495
support surfaces in 1449 RGBD images, so on average 3.79
support surfaces per scene. In those support surfaces, 5095
are below the camera, while 400 are above it.

We evaluate accuracy of support extent prediction with
precision-recall curves on support extent prediction. And all
other pixels are labeled as negative so that duplicate detec-
tions are penalized. The results are shown in Fig. 12. We
also compare performance for occluded support surfaces to
un-occluded (visible) ones. In qualitative results, we show
predictions that have confidence greater than the value cor-
responding to the 0.5 recall threshold. For support extent pre-
diction we compare to a baseline of plane-fitting, based on
the (Silberman et al. 2012) code for plane segmentation. We
used their plane estimation which comes from a RANSAC
and graph cut procedure, and post-process them using the
appearance and surface normals. We see that our method out-
performs the baseline by 17 % precision at the same recall
level or 13 % recall at the same precision. In addition, we
also see that the performance of the visible regions are much
better than that of the occluded areas, as expected.

In the qualitative results of Fig. 13, we see that the
transferred support planes can give us a rough estimation
of individual support objects. Only the best configuration is
displayed here, but our system can also generate the best K
configurations. Because the configurations are generated in

real 3D space, the support detected surface are guaranteed to
be consistent in 3D geometry.

5 Conclusion

We have described a simple and general approach to label
both visible and occluded portions of background. Our
approach does not require hand-designed priors, but instead
applies non-parametric scene priors learned from the train-
ing set. Our contributions can be summarized as follows: (1)
We found the proposed method works well across a num-
ber of 2D datasets, including StreetScenes, IndoorScenes
and SUN09, outperforming relevant baselines, especially on
the occluded part of the surfaces. (2) Our further analysis
of the method shows that it is vitally important to consider
long range contextual information. (3) Our method proposes
multiple polygonal hypotheses for surfaces, better model-
ing scene structure than the usual per-pixel labels. (4) Our
method is extended to 3D space, and finds complete extent
of support surfaces in RGB-D indoor scenes. We hope this
generic approach for inferring occluded background regions
would serve as a good starting point that could be extended
with domain-specific priors and constraints.
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