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Abstract. Scene understanding requires reasoning about both what we
can see and what is occluded. We offer a simple and general approach
to infer labels of occluded background regions. Our approach incorpo-
rates estimates of visible surrounding background, detected objects, and
shape priors from transferred training regions. We demonstrate the abil-
ity to infer the labels of occluded background regions in both the outdoor
StreetScenes dataset and an indoor scene dataset using the same ap-
proach. Our experiments show that our method outperforms competent
baselines.

1 Introduction

Semantic scene labeling is most often viewed as the problem of labeling pixels
according to the depicted object category. If done accurately, such representa-
tions provide a good sense of what objects and surfaces are visible. But the goal
of vision is to provide information about the entire surroundings, not just what
is in the line of sight. Consider the images in Fig. [Il We humans have a strong
sense of the locations and extents of the sidewalks, roads, and buildings, even
though many of them are largely or even fully occluded. However, if we stick to
what we can actually see, huge portions of the scene are unknowable.

In this paper, our goal is to label both visible and occluded regions into
background categories. For example, a car pixel should be labeled as “road”,
“sidewalk”, or “building”, depending on what is behind it. A few recent efforts
have been made in this direction, applying strong domain-specific priors and
constraints to enable inference of occluded regions. For example, Geiger et al. [1]
infer the full road layout from video, and Hedau et al. [2] and follow-up works
infer the full extent of the floor from an image. We are seeking a more general
approach that would work for a variety of scenes, both indoor and outdoor,
without hand-defined priors. Such a general approach could be used as a default
system and adapted to particular domains where appropriate.

We incorporate three basic types of information. First, we classify visible
background regions. An occluded patch that is surrounded by road, for exam-
ple, is likely to be more road. Second, we classify visible foreground regions and
apply object detectors to localize common objects, such as cars and pedestrians.
Location of foreground objects is predictive of background regions. For example,
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Fig.1. Motivation. Scene parsing is often viewed as a problem of labeling pixels
into visible categories. But these representations leave much of the underlying scene
unknowable. For example, because the woman (top row) is occluded, we cannot de-
termine what she is standing on without inferring that the bicycles are occluding the
sidewalk. Likewise, finding paths through cluttered scenes is nearly impossible without
reasoning about the underlying surfaces. Below, we project the ground into an overhead
view (yellow=sidewalk; green=road; red=blocked by building or trees; gray=unknown).
Without more complete estimates of the background, huge portions of the scene are
left unknown.

cars are often on the road, and people are often on sidewalks. After obtaining
label confidences for the visible regions and object bounding boxes, we predict
the complete underlying labels with a feedforward contextual classifier, in the
spirit of Tu and Bai’s autocontext [3]. Third, we incorporate global scene pri-
ors and region shape priors from training images. Often, researchers consider
background to be shapeless regions defined by object occlusions, but when we
infer the underlying surfaces, their inherent structure remains. For example, side-
walks and roads have characteristic patterns; trees have complex shapes; walls
have simple quadrilateral shapes. We use these priors without explicitly defining
them, by copying whole polygonal regions from the training set that match our
scene according to current likelihood estimates. These transferred regions can
then be used to improve label estimates, and they also provide a more struc-
tured scene representation in terms of a few polygons (rather than maps of pixel
confidences).

To demonstrate the generality of our approach, we perform experiments on
the CBCL StreetScenes dataset [4], Hedau et al. [2]’s indoor scene dataset as
well as the SUNQ9 dataset. Each dataset has polygonal labels that can be used
to evaluate identification of visible surfaces (as is usually done) or labeling of
underlying surfaces (as is our interest). We show that our approach outperforms
competent baselines such as classification into visible regions and filling in oc-
cluded background regions using nearest visible labels or graph cuts.



1.1 Related Work

Pixel Labeling Pixel labeling problems are nearly always posed as the as-
signment of labels for the depicted objects or surfaces, as can be seen in the
most widely used datasets such as MSRC21 [5], Pascal VOC Segmentation [6],
SUN’09 [7], Geometric Context [8], CamVid [9], and the Stanford Background
Dataset [10]. Even methods that are focused on scene geometry, such as Hoiem
et al.’s surface layout [8] are restricted to labeling visible surfaces. Notable ex-
ceptions include recently proposed indoor scene datasets [1112], Geiger et al.’s
work [I] to infer the upcoming road plan from a vehicle-mounted video camera,
and Gupta et al.’s blocks world revisited [I2]. These approaches regularize visi-
ble evidence with simplified models and geometric priors that are suitable for a
particular type of scene or application.

We benefit from current methods to label visible foreground and background
surfaces. In particular, we use the generic region classifier made available by
Hoiem et al. [§]. In contrast to existing work on inferring complete scene layout,
we aim to develop a general approach that can be applied to a wide variety of
problems. Although our problem definition is not the usual, we can use some ex-
isting datasets. People often find it easier to label background regions with poly-
gons that cover the entire surface, rather than drawing around occluding objects.
This is one reason that datasets such as LabelMe [I3] and CBCL StreetScenes [4]
to instruct labelers to draw polygons around the entire background region, ig-
noring occluders. In fact, Bileschi’s thesis [4] reports that labelers often want to
label portions of objects, such as tree trunks that cannot be seen at all. It is
difficult for people not to see beyond their line of sight. Usually, these datasets
“flatten” the label map based on figure/ground ordering, assigning each pixel
to one label. We define our task based on the original polygons, predicting, for
example, the building pixels that are occluded by a car.

Contextual Methods Many contextual methods have been developed, most
often to aid the recognition of “things”, such as cars or pedestrians. We build
closely on Tu and Bai’s auto-context [3], a feedforward mechanism for iteratively
classifying a pixel given its features and the current confidences of surrounding
pixels. Given initial confidence maps, created by our region classifiers and object
detectors, we iteratively re-classify each pixel into a background label. In original
auto-context framework the target labels were consistent throughout the process.
In our case, we start with confidences for visible surfaces and objects and use
them to iteratively re-predict confidences for both visible and occluded regions.
A variety of other feed-forward contextual approaches have been reported in the
literature (e.g., [I4[I5II6]). We favor auto-context approach for its simplicity,
efficiency, flexibility, and intuitive behavior as a form of belief propagation on
an MRF [3].

Region-transfer Methods After we infer as much as possible from visible
surfaces and objects, we incorporate global scene priors and shape priors by



matching our confidence maps to the labeled ground truth of training images.
In this, we relate to several region-transfer methods, such as Maliesiwicz and
Efros’ visual memex [I7], Tighe and Lazebnik’s superparsing [18], and other
label transfer methods by Liu et al. [I9] and Zhang et al [20]. Our method differs
from some in that we match purely between our predictions and training ground
truth (without considering appearance), so that we are transferring a layout
prior, rather than using matched regions as the primary cues for labeling. Our
transfer method differs from Liu et al. [I9] and Zhang et al. [20] in its simplicity:
we simply copy regions in-place, either from one or several training images whose
scene-wide labels match well. In some applications, deforming transferred regions
may be advantageous, but in our experiments, limiting deformation helped to
preserve the original scene layout priors.

1.2 Contributions

Our primary contribution is a general approach to infer underlying surfaces
based on estimates of visible surfaces, detected objects, and non-parametric pri-
ors on scene layout. We initially attempted a complicated method involving
appearance-based image retrieval, geometric reasoning, and MRF inference, but
our current, relatively simple approach, performs better. Our approach incorpo-
rates existing techniques, such as region classification [§], feed-forward contextual
prediction [3], and non-parametric label transfer [I9], but it is simple, efficient,
and generally applicable. We expect that contextual recognition algorithms and
domain-specific scene layout algorithms would benefit from having our more
complete scene layout estimates as a starting point for more complex reasoning.

2 Labeling the Complete Scene Surfaces

In this section, we describe our labeling algorithm for complete scene layout. We
first describe how to label visible part of the scene, using an off-the-shelf image
labeling algorithm and pre-trained object detectors. We then incorporate visible
information into a feed-forward contextual prediction to infer the occluded part
of the background regions. Next, polygons are matched based on the current label
confidences to provide a shape prior for each label. The final pixel prediction
incorporates visible surface predictions and the transferred polygons to provide
the final complete background labeling. The full pipeline to find the complete
scene layout is summarized in Fig. [2l We also describe three baseline methods
for inferring occluded background labels.

We define foreground and background categories by hand. For example, on
the StreetScene dataset, “building”, “road”, “sidewalk”,“sky”, “store” and “tree”
are defined as background, and “car”, “pedestrian”, “bicycle” are foreground.

2.1 Labeling Visible Surfaces and Objects

We apply the region classifier from Hoiem et al. [8] to label pixels into visible
foreground and background regions. The image is first over-segmented into su-
perpixels, which are then grouped into multiple segmentations. Color, texture,
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Fig.2. Given an input image, we predict the labels of visible foreground and back-
ground surfaces and estimate object locations using detectors. We then apply a feed-
forward contextual method to infer the labels of occluded background regions. We
transfer training regions that match current estimates and use them to provide a struc-
tured hypothesis and a shape prior which is used to refine the background pixel labels.

edge, and vanishing point cues are then computed for each superpixel. Finally a
boosted decision tree classifier combines the prediction and estimates the likeli-
hood of each possible label for each pixel, providing a confidence map for each
label.

This algorithm is designed to parse geometric classes and works well for
background regions such as building, road and trees, outperforming a more recent
algorithm on these classes [18] (see Fig. |5| in the experiment section). We use
Felzenswalb et al.’s pre-trained object detector [2I] to detect foreground objects
such as “cars” and “pedestrians”. For each category, we convert the detection
bounding boxes to a detection confidence map, where the value of each pixel is
set to the maximum of the scores of the detection window that contains that
pixel.

2.2 Using Context to Infer Labels of Hidden Surfaces

We base our approach to infer background labels of occluded pixels on the auto-
context framework. In the original auto-context paper, the algorithm starts by
learning an appearance classifier using image patch features and a boosting al-
gorithm. After applying the trained classifier, the confidence map is then fed as
contextual information to train the next classifier. The surrounding label con-
fidences of a pixel are used as features to construct a new training feature set.
A new boosted classifier based on the training set is learned and it, in turn,
updates the confidence map. The algorithm iterates this process, improving the
ground truth likelihood of training labels in each iteration.

We use the same feed-forward idea. However, rather than using appearance
features (which would only describe the visible surfaces), we instead directly
rely on the outputs of our region classifier and object detectors. As suggested in
Tu and Bai [3], we sample the contextual features in the form of sparse, radially
distributed points. We use logistic regression for classification instead of boosting
as our classifier so that feature computation and applying of the classifier can be
done by 2D convolution operations and linear additions over the whole image.
This allows us to reduce the testing time to under 1 second per image (400x300



Complete Scene Labeling Algorithm
/* Training */
Perform object detections and image parsing of visible surfaces in all training images
Let {Vi} be the confidence maps of region classification and detection for each image
/* Main loop of auto-context */
Sample image i and position x from V and Y to build training set Sg = {Ym,Vi,N(m)},
where Y is the ground truth map of the complete scene and N(z) is the radial distributed
neighborhood of position . Train classifiers using logistic regression and obtain parameters wg.
Fort=1...T
Apply previous classifiers with parameters w;_1 to all training images.
The resulting probability maps of label predictions are PGt

Build a new training set, now with feed-forward context Sy = {Yiz, [Vi n(x); Pit;]?i)]}
Train classifiers using logistic regression on S;; the learned parameters are wy.
End
/* Incorporate shape prior */
For each training image i, retrieve polygons from training images that match the PET).
Compute shape prior {Q;} by flattening retrieved polygons.
L T
Construct final training set Sana1r = (Yiz, [Vi,N(x); PE,J\)I(zV Qi N()])
Train the final classifier with S* with parameter w*

/* Testing */
For a testing image k, do object detections and region classification of visible surfaces.
Let the result be V. Apply classifier wo to Vi n (), for each position z.
The resulting confidence map of label prediction is P;CO .
Fort=1...T
Apply classifier w¢ to [V n(2); P
End
Compute shape prior Qi by retrieving polygons from training images.

5:17\71()1)17 for each position z. The result is Pg:fl).

Apply w™ to [V N(x); P;chzj(z); Q. N(2)]) to get final prediction map P*

Fig. 3. Outline of our full algorithm. Visible parsing results, object detection, previous
label predictions and polygon shape prior are combined to infer the complete label map
and polygonal layout.

pixels), whereas the original algorithm which runs at 30 to 70 seconds on a
300 x 200 image.

Due to its discriminative training, auto-context can go beyond simple smooth-
ing. For example, in Fig. [ it can recover the sidewalk region by looking at the
prediction of nearby pixels: if there is building on top of it and road below it, then
it is more likely to be sidewalk. An initially missed sidewalk region is recovered
after three iterations of auto-context.

2.3 Region Overlay as a Scene and Shape Prior

Intuitively, the overall pattern of labels should be similar to other images ob-
served in the training set, and the pattern of a particular type of label is likely
to match some training image quite closely. We operationalize this intuition by
finding polygons in the training set that match our current label predictions.
These polygons provide a scene prior (because the training image that they
come from should have similar labels overall) and a shape prior (because the
transferred region maintains its shape). The transferred regions can be used to
refine our per-pixel background labels, and the set of transferred regions provide
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Fig. 4. Illustration of baseline methods. (a) shows the original image and (b) gives the
parsing map of visible part; (c)-(e) Baseline methods do not go beyond smoothing. (f)
and (g) shows incorporating context using classifier does more than a smoothing term,
recovering the some sidewalk area. After polygons are retrieved, the flattened shape
prior (h) helps to regularize the layout and gives final output (i).

alternative coherent yet compact hypotheses about the hidden portions of the
scene.

We find polygons for the each background class separately using the inter-
section over union criteria. From the previous steps, for each query image k we
computed probability map of the background label [ as P; ;. We then find the
best polygons that matches it and directly lay down the polygons as our region
prediction for image k, label [.

The ground truth mask of background label ! in training image i is Gy,
where Gy, = 1 if pixel x of image ¢ is of the label I in the ground truth
annotation and 0 otherwise. Then the fitting score of image i’s polygons to P, j
is defined as:

E ’ITLZ’I’L(G[ i, a:yPl k a:)
Z ma$<Gl i, waPl k z)

Score(Gui, Prx) =

This can be interpreted as a weighted version of region overlap score for two
polygons. For each class I, we select the top image ¢ from the training images set
whose matching score is highest for query image k and is bigger than a threshold
t=0.3.



Similarly, we define global matching score as:

— Zl Z(E min(Gl,i,w7 I_)l,k:,x)
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To preserve global layout similarity, we only consider matching polygons whose
image global matching scores Score(G;, Py) are among the highest R = 200
images.

Our initial set of polygons might overlap or leave some pixels unlabeled. How-
ever, they preserve the simplicity of the real world regions and can be helpful
for further inference. To resolve the overlapping issue, we assign the overlap-
ping region exclusively to the polygon which has the highest confidence in the
overlapping part.

We then create a polygonal shape prior by putting down the polygons and
assign the unlabeled pixel to its nearest polygon region. This gives a clean,
polygonal layout of the complete scene and is fed back into our context classifier
for final training. Since visible part of the sky and trees cannot be occluded by
other background regions and usually has complicated boundaries, we do not
put any shape prior on those regions.

Score(Gi, Pk)

2.4 Baselines

Other general-purpose methods to infer labels of occluded regions do not exist in
the literature, so we provide several baselines. Each method attempts to predict
the labels of the underlying surfaces, given the label confidences for the visible
surfaces.

Most confident background assigns each foreground pixel to the most
confident background label.

Nearest method assigns occluded background pixels to the nearest (in image
location) visible background pixel.

We also tried using graph cut segmentation with alpha-beta swaps [22].
Each pixel is represented a node in the graph. Our unary term contains the
log probability that a pixel x of a query image k has background class label
I: Yunary(z,1) = log P(l;2) = log Py, directly from the output of our visi-
ble parser. Our pairwise term enforces contrast-sensitive boundaries in visible
regions and uniform smoothing in occluded regions for adjacent pixels x; and
Tt

U(21)—I(2))?)
Vpairwise(T1, T2, 11, 1) = LIy # L) [MP(fgler) + Ao (1 — P(fgler))e =2 ]
where P(fg|x1) is probability that z; is in a foreground region. ¢ is a parameter
that controls the amount of smoothing. A\; and A modulate how much label
smoothing we want for visible and occluded portions of the image.

3 Experiments

In this section we show both quantitative and qualitative results for predicting
scene layout on three different datasets, StreetScenes, IndoorScenes and SUN09.



We evaluate the pixel labeling accuracy of the background categories on all three
datasets. For each experiment, we use 3 iterations of feed-forward training. The
ground truth pixel map is created with only complete background classes, as
if the foreground objects are not there. Unlabeled regions in the ground truth
are ignored for evaluation. Qur pixel accuracy is reported as the average pixel
accuracy over images.

3.1 StreetScenes

The StreetScenes dataset consists of 3547 high quality images of urban environ-
ments, in which 710 images are for testing. The dataset is hand-annotated with
polygonal, complete region labels. In this dataset, background classes as “road”
and “sidewalk” is often heavily occluded by foreground objects like “car” and
“pedestrian”.

All three baselines described in Section[2.4]are tested on this dataset and pro-
vide very similar performance (Fig. . Most Confident and Nearest baselines
methods leave the pixels predicted as background intact; they cannot correct any
mistakes on the visible part of the scene. The Nearest method mainly works if the
visible prediction is smooth and correct, but the method fails when the visible
prediction is cluttered. Notice that Graphcut also made almost no improvement
compared to Most Confident, because it does not go beyond smoothing the label
map. As shown on Fig. e), Graphcut smooths out the sidewalk region just like
the other two baselines. However, using the feed forward discriminative learning
approach, the sidewalk is correctly recovered. We also tested SuperParsing [18],
which performs similarly with the baseline methods on the visible part, but
poorly on occluded regions, because it depends heavily on local visible features.

Our full system outperforms all baselines, eliminating 18% of the error from
the Most Confident method. We evaluated the effectiveness of different compo-
nents of our system in Fig. The polygonal shape prior has better accuracy
on occluded portion but does not improve the labeling of visible portions.

3.2 IndoorScene dataset

The IndoorScene dataset has 308 indoor images with 5 ground truth layout
surfaces, annotated also in polygons: floor, left wall, middle wall, right wall, and
ceiling. The challenge in the IndoorScene dataset is that the foreground “clutter”
such as furniture occludes background regions.

One adaption we made for this dataset is that we transfer polygons all from
one image to the query image instead of transferring from different images so
that the box surfaces agree on geometry with each other in the final prediction.
For evaluation, we compare to the original baseline, the confidence map trained
using Geometric Context classifier. Our method increases the labeling overall by
1.6% (Fig. . For the occluded region, the pixel accuracy was improved from
0.658 to 0.729. Hedau et al.’s method [2], which incorporates vanishing point
estimates, outperforms us with 0.801 on overall accuracy, though the method
applies only to indoor scenes.
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Method Complete scene|Occluded|Visible

Most Confident 0.795 0.601 | 0.810

Nearest 0.798 0.619 | 0.812

Graphcut 0.803 0.615 | 0.818

Ours 0.833 0.715 |0.843

Superparsing 0.775 0.453 | 0.800

(a) Pixel accuracy on StreetScene dataset

Method Complete scene|Occluded|Visible
Most Confident 0.795 0.601 | 0.810
Shape Prior Only 0.818 0.713 | 0.826
Ours, w/o Shape Prior 0.832 0.705 | 0.842
Ours, w/o Detection 0.831 0.705 | 0.841
Ours, Full 0.833 0.715 |0.843

(b) The effectiveness of different cues of our framework

Fig.5. (a) shows our result compares favorably to the baselines. The “Most Confi-
dent”, “Nearest” and “Graphcut” are based on the confidence maps of training the
classifier of Hoiem et al.. The SuperParsing results shown are produced in the Most
Confident fashion. Using Nearest or GraphCut on SuperParsing results yields sim-
ilar performance. (b) Explores the effectiveness components in our framework, also
on StreetScene dataset. “Shape Prior Only” correspond to the pixel map of the best
polygonal layout guess, as shown in Fig. 4] (h). “Ours, w/o Shape Prior” has everything
except transferring shape prior. “Ours, w/o Detection” uses everything except object
detection cues.

3.3 SUNO09 dataset

We use the subset of 8684 images from SUNQ9 dataset, containing both indoor
and outdoor images. We manually cleaned up the tags, among which “vehicle”,
“chair”, “people” and “object” are foreground; “building”, “ceiling”, “floor”,
“ground”, “field”, “road”, “sky”, “tree”, “wall”, “water” and “sidewalk” are
background. The overall pixel accuracy are reported Fig. Similarly to the
previous two experiments, we see significant improvement on occluded regions
(from 49.8% to 66.1%) and modest increase on the visible regions.

3.4 Qualitative results

We show qualitative results from both StreetScenes (Fig. |8) and IndoorScene
dataset (Fig. E[) We first show our visible surfaces and detected objects. The
gray area indicates background regions occluded by the foreground objects. Then
using feed-forward inference, the missing background regions are completed, and
then polygons are fit to those regions creating complete polygonal layout pro-
posals. Finally those polygons are used as shape prior to refine the pixel labels.
Qualitative results on SUN09 will be included the supplemental material due to
space constraints.
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Method Complete Scene|Occluded|Visible
Most Confident 0.700 0.658 | 0.710
Ours 0.739 0.729 | 0.742

(a) Pixel accuracy on IndoorScenes

Method Complete scene|Occluded|Visible
Most Confident 0.639 0.498 | 0.665
Ours 0.691 0.661 | 0.695

(b) Pixel accuracy on SUN09

Fig. 6. The overall accuracy on testing set of IndoorScenes and SUN09 dataset, our
method greatly helped occluded part of the scene, and made slight improvement on
the visible portion.
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Fig. 7. Per-class pixel accuracy on all 3 datasets we experimented with. Note that
there is no number on “ceiling” for occluded IndoorScene dataset because they are
never occluded. For SUNQ9, our biggest improvement comes from background classes
that are often occluded, such as wall, floor and road.

4 Conclusion

We have described a simple and general approach to label both visible and oc-
cluded portions of background. Our approach does not require hand-designed pri-
ors, but instead applies non-parametric scene priors learned from the training set.
Our method works surprisingly well, especially for the StreetScene dataset where
many training images are available. For the indoor dataset, our method outper-
forms our baselines but does not perform as well as Hedau et al.’s method [2] that
directly incorporates geometric priors and structured learning. Our generic ap-
proach for inferring occluded background regions would serve as a good starting
point that could be extended with domain-specific priors and constraints.

Acknowledgements: This research was supported in part by NSF Award
IIS 0904209 and ONR MURI Award N000141010934.
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Fig. 8. Qualitative results on street scenes: Left to right: ground truth; labeling
into visible surfaces and detected objects; labeling of completed surfaces with first poly-
gon guess; same labeling with second polygon guess. In each image, the region colors
indicate pixel labels. The polygons in the right two columns indicate the transferred
regions, representing different hypotheses about individual structures. For example,
top row: red polygons indicate the possibility that the building region is composed
of one building or two. Bottom row: sidewalk is incorrectly hallucinated to cross the
road. Note that our system is often able to infer sidewalk regions that are nearly fully
occluded.
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Fig.9. Qualitative results on indoor dataset: Left to right: ground truth; labeling
into visible surfaces; labeling of completed surfaces with first polygon guess; same la-
beling with second polygon guess. In each image, the region colors indicate pixel labels.
We can infer the room structure using the same process as for outdoor scenes. Although
our method does not outperform Hedau et al.’s domain-specific method [2] that incor-
porates strong geometric priors, our method does outperform the initial surface labeler
used by them.
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