
Appears in European Conference on Computer Vision (ECCV) 2008

Learning CRFs using Graph Cuts

Martin Szummer1, Pushmeet Kohli1, and Derek Hoiem2

1 Microsoft Research, Cambridge CB3 0FB, United Kingdom
2 Beckman Institute, University of Illinois at Urbana-Champaign, USA

Abstract. Many computer vision problems are naturally formulated as
random fields, specifically MRFs or CRFs. The introduction of graph cuts
has enabled efficient and optimal inference in associative random fields,
greatly advancing applications such as segmentation, stereo reconstruc-
tion and many others. However, while fast inference is now widespread,
parameter learning in random fields has remained an intractable problem.
This paper shows how to apply fast inference algorithms, in particular
graph cuts, to learn parameters of random fields with similar efficiency.
We find optimal parameter values under standard regularized objective
functions that ensure good generalization. Our algorithm enables learning
of many parameters in reasonable time, and we explore further speedup
techniques. We also discuss extensions to non-associative and multi-class
problems. We evaluate the method on image segmentation and geometry
recognition.

1 Introduction

The availability of efficient and provably optimal inference algorithms, such
as graph cuts [1] and its approximate extensions [2], has inspired progress in
many areas of computer vision. For example, the efficiency of graph cut based
algorithms enables interactive image [3,4] and real-time video segmentation tasks.
The optimality guarantees of these algorithms allow computing the maximum a
posteriori (MAP) solution of the model distribution.

The ability to compute the minimum energy solution has revealed that simple
energy models (e.g., with one unary term and an isotropic smoothing penalty in
grid labeling problems) are insufficient to model the complex structures inherent
in computer vision problems [5,6]. Despite this knowledge, overly simplistic
hand-tuned random field models continue to be common practice. We believe
that the continued use of such impoverished models reflects, not a belief in
the supremacy of such representations, but the absence of tractable machine
learning techniques for large MRF and CRF problems. Currently, the most widely
used learning algorithms include cross-validation and simple partition function
approximations [7]. However, many works do not perform learning at all and rely
on hand-tuned parameters.

In this paper, we describe an efficient and easy-to-implement technique that
is capable of learning dozens of parameters from millions of pixels in minutes.
Our algorithm is based on the structured support vector machine (SVMstruct)

2

framework of Tsochantaridis et al. [8] and the maximum-margin network learning
of Taskar et al. [9,10]. These works were not focused on computer vision problems.
They did not explore graph cuts for learning, and instead chose approximate
inference algorithms (such as sum-product loopy BP) which do not perform well
on grid-graph problems encountered while dealing with images [6].

For a given parameterized energy function, our goal is to learn the parameters
so that the ground truth has the lowest energy by the largest possible margin,
or, if that is not possible, that the energy of the ground truth is as close as
possible to that of the minimum energy solution. We begin with arbitrary initial
parameters and an empty “contrastive” solution set. Then, iteratively, we find
the minimum energy solution for the current parameters, add it to our alternative
set, and find the parameters that maximize our objective function, considering
only the ground truth and the current alternative set of solutions.

When the energy is a linear or quadratic function of the parameters (as
is typically the case) and can be optimally minimized, we can estimate the
parameters accurately in a highly efficient manner, typically requiring a few
dozen iterations for problems involving dozens of unary and pairwise random-
field parameters. We also show that, when our objective function is maximized,
the sufficient statistics (those statistics necessary to compute the energy) of
our solutions will closely match the sufficient statistics of the ground truth.
Additionally, we describe several extensions of our technique, evaluating the
suitability of alternative objective functions, and dealing with cases for which
optimal energy minimization is not possible. We validate our algorithm and
its extensions on the problems of image segmentation and multi-class geometry
labeling.

Contributions We present an efficient and practical algorithm to train random
field models for images. The contributions of our paper include:

1. Use of graph-cuts to efficiently do maximum margin learning of parameters
exactly for submodular MRFs and CRFs. Generalization to new images is en-
sured via a large margin regularizer. Approximations such as pseudolikelihood
are not required.

2. Learning parameters of non-submodular problems using alpha-expansions.
3. Investigation of loss functions for segmentation and geometry labeling.
4. Formulation of the polygon-bounded image segmentation task, for the purpose

of obtaining refined segmentations from rough user interactions.

2 Basic Learning Algorithm

Many computer vision tasks such as segmentation and stereo estimation can
be modeled with random fields, which describe a joint probability distribution
of all random variables, either jointly or conditionally on the input pixels. The
probability is expressed as an exponentiated energy. The energy typically consists
of a sum of terms, including node energies for each random variable and interaction

3

energies that model dependencies between adjacent variables. Usually, the energies
are parameterized as a linear function of these unary and pairwise features.

Applying this model requires 1) learning the parameters of the model from
training data, and 2) inferring the most likely labels for the test data, using the
learned parameters. Inference in this model amounts to an energy minimization
problem, which can frequently be solved via graph cuts.

Parameter learning aims to find parameters that fit the training data and
that also generalize to unseen test data. The learning is formulated as minimizing
a loss function on the training set. A common loss function is the negative
likelihood of the training labels, but for random fields this leads to an intractable
optimization problem. Instead, we employ a tractable approach that uses other
loss functions. In this section, we describe a simple algorithm that maximizes
the difference between the energy of ground truth labeling and other labelings.
In section 3, we refine the loss function to incorporate degrees of labeling error.
This makes the method robust to outliers and ensures good generalization to test
data. We begin by detailing the model and motivating the loss function.

2.1 The Random Field Model

Let X = {x(n)}n be the input collection of instances x(n), with corresponding
labelings Y = {y(n)}n, where n indexes the instances. For example, an instance
may be an image with x denoting the pixel values and y their segmentation
labels (foreground or background). Our model is a conditional random field of
the form

P (Y | X,w) =
1
Z

e−
∑

n E(y(n),x(n);w), (1)

where w are parameters (weights), and Z is a normalizer (the partition function).
A typical energy decomposes over nodes V (e.g. individual pixels) and edges
E (e.g. pairs of adjacent pixels). We consider energies E that are linear in the
parameters w and the set of node and edge features φ such as:

E(y,x;w) =
∑
i∈V

w1φ
(1)
i (yi,x) +

∑
(i,j)∈E

w2φ
(2)
ij (yi, yj ,x), (2)

which we can abbreviate as E(y,x;w) = wTφ(x,y). Thus, we have a log-linear
model in the exponential family.

To infer labels of a test input x, given parametersw, we will find the maximum
a posteriori (MAP) labelings y∗ = argmaxy P (y | x,w).

During training we look for weights w that assign the training labels y(n) a
greater than or equal probability of any other labeling y of instance n, i.e.,

P (y(n) | x(n),w) ≥ P (y | x(n),w) ∀y 6= y(n) ∀n. (3)

If this were successful, the inferred MAP labelings for the training data would
equal the training labels (except for possible ties). We can cancel the normalizer

4

Z from both sides of the constraints (Eq. 3) and express the constraints in terms
of energies

E(y(n),x(n);w) ≤ E(y,x(n);w) ∀y 6= y(n) ∀n. (4)

Thus, we desire weights that give the training labels at least as low an energy
as any other label configurations on the training data. However, the inequalities
in (4) may have multiple or no solutions. We resolve this by finding the parameters
which satisfy the inequalities with the largest possible energy margin γ, so that
the ground truth labeling has the lowest energy relative to other labelings. This
large margin concept serves to regularize the problem and provide generalization
to unseen test data. The margin may be negative if the original inequalities had
no solutions. Thus we have

max
w:‖w‖=1

γ such that (5)

E(y,x(n);w)− E(y(n),x(n);w) ≥ γ ∀y 6= y(n) ∀n.

We have constrained the weight norm ‖w‖ to unity to prevent weights from
growing without bounds.

2.2 An Efficient Learning Algorithm

Here we describe a simple but efficient learning algorithm based on the optimiza-
tion (5). It is not feasible to solve that program, as it has an exponential number
of constraints, one for each possible labeling y of each instance. Instead, we
shall perform the optimization over a much smaller set of labelings {S(n)}n. We
explicitly enforce that the ground truth has lower energy than labelings in this
set. We check whether this also holds true for the remaining labelings, by finding
a labeling that has the lowest energy via graph cuts, or any other efficient method.
If this labeling has lower energy than the ground truth, or doesn’t achieve the
margin, we add it to the constraint set. Finally, we update the parameters to
satisfy the new constraint, and iterate. If the parameters do not change (for
example, if we did not find any example better than the ground truth), then we
stop. This is detailed in Figure 1. Each step of this algorithm is a standard task
that can be solved efficiently. A key observation is that the MAP labeling in Step
1 can be translated to a graph cut problem for many vision tasks. Graph cut
algorithms can quickly find global optima for a large class of so-called submodular
energies [1,11].

Step 3 is written as a general optimization for clarity, but is in fact just a
quadratic program (given in Section 3). Thus it is convex and is free from local
minima. The overall procedure converges as there are only a finite number of
labelings that can be added. Crucially, it converges in a low number of steps
in practice, and even in the worst case, is proven to require only a polynomial
number of steps if a global optimum can be found in step 1 (see [8]), which
is true for the case of submodular energy functions. At convergence, all label
configurations outside of S(n) will be at least a margin distance away from the

5

BASIC ALGORITHM

Input:
– input-labeling pairs {(x(n),y(n))} training set
– empty set of competing low energy labelings: S = ∅
– initial parameters: w = w0

Repeat until w is unchanged (within a tolerance)
Loop over training instances n

1. Find the MAP labeling of instance n, using e.g. graph cuts
y∗ ← argminy E(y,x(n); w)

2. Add y∗ to the constraint set
S(n) ← S(n) ∪ {y∗}

3. Update the parameters w to ensure ground truth has the lowest energy

max
w:‖w‖=1

γ such that (6)

E(y,x(n); w)− E(y(n),x(n); w) ≥ γ ∀y ∈ S(n) ∀n
w2 ≥ 0

Fig. 1. Pseudocode for the basic random field learning algorithm.

ground truth which is why it is important to study the choice of margin measure
(loss function).

The constraint w2 ≥ 0 in Eq. 6 is needed in the context of graph cuts to
ensure that the problem remains submodular for energies E(y,x;w) that would
become non-submodular for w2 < 0 (we have assumed that all pairwise poten-
tials φ(2)

ij (yi, yj ,x) are non-negative and convex); for other exact optimization
techniques (e.g. max-product belief propagation on junction trees, or branch and
bound), this constraint can be lifted. Multiple parameter optima may exist, but
will all result in the same energy for the training data.

Non-submodular Energy Functions Some problems in computer vision
involve non-submodular energy functions that are NP-hard and cannot generally
be exactly minimized in polynomial time. Examples include multi-label problems
such as multi-class geometric labelling [12] and stereo [2]. In these cases, efficient
approximate inference can be used in Step 3 of the cutting plane algorithm in
Figure 1. The choice of the optimization technique affects the convergence and
correctness guarantees of this method [13].

The approximate algorithms commonly used in computer vision include (1)
message passing algorithms such as tree-reweighed message passing (TRW) and
loopy belief propagation (LBP), and (2) move-making algorithms such as alpha-
expansion [2] and Fast-PD[14]. Algorithms such as TRW and Fast-PD work by
formulating the energy minimization problem as an integer programming problem
and then solving its linear relaxation. These algorithms in addition to giving
an approximate solution, also produce a per-instance lower-bound of the energy
which can be used to check how close the approximate solution is to the global
minima. We could use this information to isolate good solutions and add them

6

to the solution set. If for a particular set of weights, the lower bound is far from
the energy of the resulting solution, we know that this set of parameter is not
appropriate as it results in a difficult inference problem and would not lead to
good solutions.

For our experiments with the nonsubmodular geometric labeling problem
(Section 4.2), we chose to use alpha-expansion. We were motivated by the re-
sult [14] showing that alpha-expansion yields close to optimal results for the
nonsubmodular Potts model (although our model is more complex).

Relation to Previous Work This work presents a method for max-margin
learning in loopy graphs such as grids (images). In contrast, [15] uses Viterbi
on a linear chain, an easier problem not applicable to images. Tsochantaridis et
al. [8] and Taskar et al. [10] rely on MAP inference but do not use graphcut for
learning. Anguelov et al. [9] use a generic CPLEX solver, which can only work on
small vision problems (equivalent to 30000 pixels, unlike 107 pixels in our case).

The work of Kumar et al. [7] is most related to us, as it does use graphcut.
However, it attempts to use a max likelihood framework, which is not compatible
with MAP inference, requiring a drastic approximation of the partition function
by a single MAP configuration. Our choice, the large margin framework, allows
us to solve the problem exactly with high probability (see Theorem 18 in [8]
and [13]).

2.3 Parameter Learning For Image Segmentation

In Figure 2 we illustrate our method with one such problem: the binary image
segmentation into foreground (cow) and background based on color models
estimated from user-given patches and smoothness constraints. In this example,
the energy has a single node term (negative log likelihood of the color given
the label) and two interaction terms: a constant penalty and a contrast-based
penalty C for neighboring pixels having different labels. Our energy function can
be written as

E(x(n),y(n);w) = w1

∑
i∈V

− logP (x(n)
i | y(n)

i)+ (7)

w2

∑
(i,j)∈E

1
y
(n)
i 6=y

(n)
j

+ w3

∑
(i,j)∈E

1
y
(n)
i 6=y

(n)
j
C(x(n)

i , x
(n)
j),

where 1 denotes an indicator function equaling one for differing labels. The
indicator functions enforce a Potts model penalty on the labelling. The likelihood
P (x(n)

i | y(n)
i) is computed from color models of the foreground and background.

These models are built using user-specified cues or seeds. The working of the
simple parameter learning algorithm for the image segmentation problem is
illustrated in figure (2).

7

Original Image Iteration 1 Iteration 2 Iteration 3

Iteration 4 Iteration 11 Constraint Surface Ground Truth

Fig. 2. Parameter Learning for Image Segmentation. The figure illustrates the
working of the basic parameter learning algorithm on the image segmentation
problem modelled with three parameters (7). The segmentations shown in the
figure correspond to the results of using the parameters estimates in iterations 1,
2, 3, 4 and 11 (in order) of the learning algorithm. These solutions are added to
the minimal solution set S(n). The algorithm converges in 11 iterations. For the
final iteration (11), we also show the plot of the 0-1 loss cost function surface
on the smoothness w2 and contrast w3 parameters of the segmentation energy
(7) keeping w1 constant. The optimal values of the weights were w2 = 1.96 and
w3 = 6.94.

3 Objectives

In this section we consider alternative objectives that are more robust to noisy
training data and have refined loss functions. Using the transformation ‖w‖ ←
1/γ, we can write program (5) as a standard quadratic program (recall that
E(y(n),x(n);w) is linear in w (Eq. 2)).

min
w

1
2
‖w‖2 s.t. (8)

E(y,x(n);w)− E(y(n),x(n);w) ≥ 1 ∀y 6= y(n) ∀n

To add robustness for noisy training data, we relax the margin constraints by
adding slack variables ξn. Thus, the individual margins may be smaller, but that
is discouraged through a slack penalty in the objective, regulated by the slack
penalty parameter C.

min
w

1
2
‖w‖2 +

C

N

∑
n

ξn s.t. (9)

E(y,x(n);w)− E(y(n),x(n);w) ≥ 1− ξn ∀y 6= y(n) ∀n
ξn ≥ 0 ∀n

8

These are all standard large margin formulations. However, in the context of
optimization over joint labelings y, we now consider refinements to the standard
margin.

3.1 Rescaled Margin

The energy constraints above enforce the same unit margin for all labelings y
competing with the training data labeling y(n), regardless of how similar y and
y(n) are (as long as they are not exactly identical). However, for vision problems
it is sensible to adapt the margin according to how much competing labelings
differ from the ground truth labeling. The idea is to enforce a relatively larger
margin for labelings that are far from the ground truth. The desired difference
between the ground truth y(n) and a labeling y will be quantified via a loss
function ∆(y(n),y). For example, an appropriate loss may be the Hamming loss
∆(y(n),y) =

∑
i δ(y

(n)
i , yi). For a 0-1 loss function ∆(y(n),y) = δ(y(n),y) we

reduce to the previous formulation.
Taskar et al. [16] proposed to rescale the margin to enforce the constraint

E(y,x(n);w)− E(y(n),x(n);w) ≥ ∆(y(n),y)− ξn (10)

for all y 6= y(n) and all n.
To construct a learning algorithm that takes loss into account, we again

iteratively collect a set of competing labelings. Now however, we must find
examples that violate these new constraints, which require us to look beyond
minimum energy labelings with respect to E.

Importantly, the margin rescaled formulation still allows graph cuts to find
the minimum energy solutions under Hamming loss, or any loss that decomposes
the same way as the energy. The Hamming loss decomposes across nodes, which
allows us to absorb the loss into the node energies, and define a refined energy
function E′(y,x;w) = E(y,x;w)−∆(y(n),y). We then arrive at the algorithm
in Figure 3. Note that the loss ∆ is only incorporated during parameter learning.
When inferring labels of test data, energy minima of E are found as before.

Generating multiple solutions using graph cuts The objectives (programs
(8)–(10)) require us to enforce constraints for all y 6= y(n). In step 1 (Figure 3) it
is possible that graph cuts find a minimum energy labeling y∗ equal to the ground
truth y(n). This would not provide any constraint on which to enforce the margin.
If this occurred for all training instances, the parameters would not change and
the algorithm would terminate without enforcing the margin. This problem can
be overcome by adding multiple low-energy labelings at every iteration, instead
of just one. The global minima of a submodular function can be found using
graph cuts. Kohli and Torr [17] showed how exact min-marginal energies can be
efficiently computed for submodular functions. We use these min-marginals to
compute the N -best solutions for the energy minimization problem. The time
taken for computing these multiple solutions is 3–4 times more than that taken
for computing the MAP solution.

9

MARGIN RESCALED ALGORITHM

Input: as in Fig. 1
Repeat until w is unchanged (within a tolerance)

Loop over training instances n
1. Run graph cuts to find the MAP labeling of instance n

y∗ ← argminy E(y,x(n); w)−∆(y(n),y)

2. If y∗ 6= y(n), add y∗ to the constraint set
S(n) ← S(n) ∪ {y∗}

3. Update the parameters w to ensure ground truth has the lowest energy

min
w

1

2
‖w‖2 +

C

N

∑
n

ξn s.t ∀y ∈ S(n) ∀n (11)

E(y,x(n); w)− E(y(n),x(n); w) ≥ ∆(y(n),y)− ξn

ξn ≥ 0

w2 ≥ 0

Fig. 3. Pseudocode for the margin rescaled learning algorithm.

3.2 Rescaled Slack

Tsochantaridis et al. [8] proposed an alternative way to incorporate a loss into
the margin constraints. They rescale the slack variables by the loss, requiring
that ∀y 6= y(n):

E(y,x(n);w)− E(y(n),x(n);w) ≥ 1− ξn
∆(y(n),y)

(12)

This formulation has the advantage that the loss ∆ and slack penalty C share the
same scale. In particular, it enforces the same default margin of 1 for all examples.
In contrast, the margin-rescaled formulation requires large margins of labelings
differing significantly from the ground truth, which could cause the algorithm
to focus on assigning high energies to poor labelings, rather than assigning low
energies to labelings close to ground truth. Unfortunately, graph cut optimization
cannot directly find labelings that violate the constraints (12). Instead, we use
graph cut to find a minimum-energy solution and check whether it violates the
constraints.

3.3 Minimum Energy Loss

While the rescaled margin and rescaled slack methods are a large improvement
over the 0-1 loss, they may still minimize training error poorly because they focus
on the constraints that require the largest slack, rather than the minimum-energy
solutions for a particular set of parameters. For instance, in the case of Taskar
et al., even if the ground truth is the minimum energy solution, if any high loss
solution does not have a sufficiently high margin, the algorithm will change the
parameters. The modification of Tsochantaridis et al. is better, since the same

10

Polygon Type 12 Point Polygon 6 Point Polygon

Cost Function (Iterations, Accuracy) (Iterations, Accuracy)

Maximum likelihood, unary only (N/A, 79.7%) (N/A, 64.3%)

Pseudolikelihood (26, 81.9%) (21, 74.0%)

0-1 Loss (13, 80.7%) (-,-)

Rescaled Margin (43, 83.0%) (11, 74.5%)

Rescaled Slack (13, 82.3%) (13, 70.7%)

Rescaled Margin + Loss (45, 85.7%) (184, 76.1%)

Rescaled Slack + Loss (90, 84.8%) (118, 76.2%)

Table 1. Number of training iterations and test accuracy for each cost function
using our graph cuts learning method to learn parameters for segmentation. The
training data consisted of rough 6 and 12-point polygon segmentations. The
method is highly efficient under all cost functions (an iteration of processing
50 images of size 320×240 takes about 45 seconds). Our new loss-augmented
functions provide the best test accuracy.

margin is required of all examples, but the cost function still will often concern
itself with solutions that are not minimum-energy solutions (and, thus, would
not be returned during inference). We, therefore, provide a new cost function
that minimizes the training error more directly.

min
w

1
2
‖w‖2 +

C

N

∑
n

ξn +
C2

N

∑
n

∆(y(n), ŷ(n)) (13)

where ŷ(n) = argminy∈S(n)∪{y(n)}E(y,x(n);w).
To optimize this objective, we iteratively find the minimum-energy solution

for the given parameters and find the parameters that minimize this cost. Loosely
speaking, this is a greedy search for minimum training loss, locally approximating
the loss gradient with the gradient of the slack. For large C2, this is guaranteed
to converge to a local minimum in training loss.

4 Experiments

The goal of these experiments is to demonstrate the efficacy of the max-margin
learning method for computer vision problems, and to study the behavior of
different loss functions in this framework. To do this, we perform experiments on
two tasks: segmentation and geometry labeling. For these tasks, there are too
many parameters to tune by hand. Our results demonstrate that our method is
highly efficient and that training with our new loss-augmented cost functions
improves test accuracy considerably.

4.1 Refining Segmentations

While completely automatic segmentation is extremely difficult, refining a coarse
user-provided segmentation with a nearly pixel-perfect segmentation is achievable

11

Fig. 4. Parameter learning for image segmentation. Given the input image and a
4-corner polygon denoting the approximate foreground region (column 1), the goal
is to produce a refined pixel-perfect segmentation. Shown are the segmentation
results from exact maximum likelihood learning using unary features (column 2),
and after learning CRF parameters with our algorithm using rescaled margin
(column 3), rescaled margin with augmented loss (column 4), and rescaled slack
with augmented loss (column 5).

and quite useful. For instance, in a photo-editing program, a person could draw a
polygon around the object, and the computer would attempt to produce a pixel-
accurate segmentation. We evaluate our algorithm on this task, with run-time
and accuracy comparisons to other methods. See Figure 4 for some qualitative
examples.

The input to our algorithm is an image and a 4, 6 or 12-point polygon that
approximates the foreground region. We train on fifty segments from fifty separate
images in the Berkeley Segmentation Dataset and test on fifty segments from a
different fifty images. We define three unary potentials: a foreground prior, signed
distance from the nearest polygon boundary, and a color histogram term. On an
eight-connected graph, we define three associative pairwise terms that penalize
connected pixels having different labels: constant, intensity contrast-based, and
color contrast-based (Euclidean distance of A and B channels in Lab space). We
learn separate parameters for horizontal, vertical, and diagonal edges to give
a total of three unary and nine pairwise parameters. To evaluate, we define
segmentation accuracy as the intersection to union ratio of the ground truth and
resulting foreground regions, and report the average test accuracy.

12

Comparison of Cost Functions In Table 1, we report accuracy when training
based on the cost functions described in Section 3, using 12-point input polygons.
The baseline case is to return the input polygon as the final foreground region
(80.9% accuracy; note that this is based on a rough human segmentation and
does not correspond to a learned model). As expected, the cost function based on
0-1 loss performs poorly (80.7%), while the margin-rescaling and slack-rescaling
method offer some improvement (83.0% and 82.3%, respectively).

During training, we define loss as pixel error for the margin-rescaling method
to ensure that we can reach the global minimum cost with our graph cut method.
We cannot make the same guarantee when using the slack-rescaling method,
regardless of the label loss function used, so we define loss as the intersection-
union ratio, as is used to report test error. Note that more general (but much
slower) minimization methods may be able to apply the slack-rescaling method
more effectively. Training with our new loss-augmented cost functions provides
significant further improvement to test accuracies of 85.7% and 84.8%, when
using margin-rescaling and slack-rescaling, respectively. For comparison, we also
trained a model using maximum likelihood including the three unary potentials
only; this gave 79.7% accuracy (exact ML training including the pairwise terms
is intractable). Note that these improvements of 4-5% over the baseline do not
fully convey the large qualitative improvement that can be seen in Figure 4.

We also trained on coarser 6-point polygon inputs. This task is more challeng-
ing and accuracy decreases, as seen in table 1. For figure 4, even coarser 4-point
polygons were used. We also performed experiments with the parameters learned
by pseudolikelihood maximization. We found the training times to be similar to
our method, but the resulting accuracies (74.0% for 6-point polygons, 81.9% for
12-point polygons) were below those achieved by our method with our proposed
minimum energy loss functions.

4.2 Geometry Estimation

With this experiment, we seek to answer whether our algorithm remains tractable
on a large-scale vision problem with several dozen parameters. Our task is to label
each pixel in the image into “ground”, “vertical”, or “sky”, using the geometric
context dataset provided by Hoiem et al. [12].

To do this, we define 8 unary parameters to model the priors, general appear-
ance, and image-specific appearance. The appearance terms are modeled as the
logistic outputs of boosted decision tree classifiers trained separately on four sets
of features described by Hoiem et al.: color, texture, position and shape, and
perspective. For each image, we also estimate the color of each class within that
image, based on an initial estimate of the geometry likelihoods. Our pairwise
interaction terms model texture and color gradients between neighboring pixels
and the relative positions. In total there are 72 interaction terms (4 directions,
including diagonal, 9 pairwise labelings, and two types of gradients). We could
learn, for example, that sky is unlikely to appear directly beneath vertical re-
gions (although it can happen with overhanging objects) or that certain types of
gradients are indicative of a boundary for particular geometric classes.

13

Fig. 5. Results of geometry (“ground”, “vertical”, or “sky”) estimation based
on our CRF learning method. Input images (top row), results based on unary
energies alone (middle) and the learned CRF (bottom).

Objective Unary only Rescaled Margin Rescaled Slack (Loss) Rescaled Margin (Loss)

Accuracy 84.6% 87.7% 86.8% 87.0%

Table 2. Accuracy on the geometry estimation problem.

What we are chiefly interested in here, however, is whether our learning
algorithm can do anything useful on this large-scale, multi-class learning problem.
To handle the case of multiple classes, we replace our regular graph cut inference
step with alpha-expansion graph cuts. Our results, shown in Figure 5 and Table 2
show that we are able to learn parameters that significantly outperform the unary
classifier. Despite the large number of parameters, the learning required only
about fifty iterations for each objective, indicating that our method is suitable
for large-parameter problems.

5 Discussion and Conclusion

We have presented an efficient algorithm to train random field models (MRFs
and CRFs) for images. These models are not tractable to train exactly using
maximum likelihood. Instead, we start from a standard large-margin framework,
and then leverage graphcut to perform inference and thereby arrive at a truly
practical algorithm for the computer vision field.

Intuitively, for a learning problem involving many parameters a large set of
minimum energy solutions will be needed to constrain the feasible parameter

14

space of our convex program. We note that some experiments required up to 184
iterations, as our parameter learning algorithm only adds one solution to the
solution set in each iteration. The rate of convergence of the learning algorithm can
be improved by adding multiple samples from the posterior labeling distribution
to the solution set in each iteration of the algorithm. We plan to explore this in
future work.

References

1. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph
cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2) (2004) 147–159

2. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via
graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11) (2001) 1222–1239

3. Boykov, Y., Jolly, M.: Interactive graph cuts for optimal boundary and region
segmentation of objects in n-d images. In: ICCV. (2001) I: 105–112

4. Rother, C., Kolmogorov, V., Blake, A.: “GrabCut”: interactive foreground extraction
using iterated graph cuts. ACM Transactions on Graphics 23(3) (August 2004)
309–314

5. Barbu, A., Zhu, S.C.: Generalizing Swendsen-Wang to sampling arbitrary posterior
probabilities. IEEE Trans. Pattern Anal. Mach. Intell. 27(8) (2005) 1239–1253

6. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A.,
Tappen, M.F., Rother, C.: A comparative study of energy minimization methods
for Markov random fields. In: ECCV. (2006) 16–29

7. Kumar, S., August, J., Hebert, M.: Exploiting inference for approximate parameter
learning in discriminative fields: An empirical study. In: EMMCVPR. (2005)
153–168

8. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for
structured and interdependent output variables. Jrnl. Machine Learning Research
6 (September 2005) 1453–1484

9. Anguelov, D., Taskar, B., Chatalbashev, V., Koller, D., Gupta, D., Heitz, G., Ng,
A.Y.: Discriminative learning of Markov random fields for segmentation of 3D scan
data. In: CVPR. (2005) 169–176

10. Taskar, B., Chatalbashev, V., Koller, D., Guestrin, C.: Learning structured predic-
tion models: a large margin approach. In: ICML. (2005) 896–903

11. Boros, E., Hammer, P.L.: Pseudo-boolean optimization. Discrete Applied Mathe-
matics 123(1–3) (2002) 155–225

12. Hoiem, D., Efros, A.A., Hebert, M.: Geometric context from a single image. In:
ICCV. (2005)

13. Finley, T., Joachims, T.: Training structural SVMs when exact inference is in-
tractable. In: Proc. Intl. Conf. on Machine Learning (ICML). (2008) 304–311

14. Komodakis, N., Tziritas, G., Paragios, N.: Fast, approximately optimal solutions
for single and dynamic MRFs. In: CVPR. (2007)

15. Collins, M.: Discriminative training methods for hidden Markov models: theory
and experiments with perceptron algorithms. In: ACL-02 conf Empirical methods
in natural lang. processing (EMNLP). (2002) 1–8

16. Taskar, B., Chatalbashev, V., Koller, D.: Learning associative Markov networks.
In: ICML. (2004)

17. Kohli, P., Torr, P.H.S.: Measuring uncertainty in graph cut solutions - efficiently
computing min-marginal energies using dynamic graph cuts. In: ECCV. (2006)
30–43

