
Comparative object similarity for improved recognition with few or no examples

Gang Wang1 David Forsyth2 Derek Hoiem2

1 Dept. of Electrical and Computer Engineering 2 Dept. of Computer Science

University of Illinois Urbana-Champaign (UIUC) University of Illinois Urbana-Champaign (UIUC)

gwang6@uiuc.edu

Abstract

Learning models for recognizing objects with few or no

training examples is important, due to the intrinsic long-

tailed distribution of objects in the real world. In this paper,

we propose an approach to use comparative object similar-

ity. The key insight is that: given a set of object categories

which are similar and a set of categories which are dis-

similar, a good object model should respond more strongly

to examples from similar categories than to examples from

dissimilar categories. We develop a regularized kernel ma-

chine algorithm to use this category dependent similarity

regularization. Our experiments on hundreds of categories

show that our method can make significant improvement,

especially for categories with no examples.

1. Introduction

There are very many object names. Training a system

with many examples of each is likely to be difficult (most

categories have few examples as shown in Figure 1). Even

if we could train such a system, doing so would not yield

much insight into how people recognize objects. People

seem to manage with few or no visual examples, because

there is much other information available to help identify

objects. An important cue is being told what an object is

“like”. For example, few people know what a “serval” is,

but when told it is like a leopard, but with longer legs and

lighter body, most can identify one in a picture. “A serval

is like a leopard” is a statement defining a new category in

terms of existing categories.

Current methods to exploit similarity information in

computer vision cannot deal with such statements. The

usual method is metric learning. Here one measures sim-

ilarity with some distance in a feature space, and adjusts

feature weights to make objects more similar to those in

the same category and dissimilar to those in different cat-

egories [10, 26, 25]; analogous procedures can be applied

0 50 100 150 200
0

500

1000

1500

2000

2500

3000

3500

4000

4500

 Instance number of the top 200 object categories

N
u

m
b

er
 o

f i
n

st
an

ce
s

Figure 1. Most categories in the dataset we use (which is a part of La-

belme) have few or no examples. The top image shows “object clouds”.

Objects with bigger names have more instances. Most objects have small

names because they have few examples. The bottom image shows number

of instances for the top 200 objects. The top 5 categories are: window,

tree, wall, building and car. The number of instances decays very quickly.

to measures of similarity that are not metric [4]. These

methods cannot use explicit inter-category information. In

the absence of category labels, data-dependent measures of

smoothness can be used to weight features [9]. In each case,

the result is a global similarity procedure — the metric is

adjusted to be consistent with all available similarity infor-

mation.

An alternative global similarity procedure uses multidi-

1

mensional scaling (MDS) to obtain an embedding that is

consistent with all similarity data. There is compelling ev-

idence that this is a poor model of human similarity judge-

ments [22] (e.g., human judgements are not symmetric).

Similarity judgements may not be consistent with one an-

other or with new information (e.g. “a car is like a van”;

“a van is like a bus”; “a bus is like a train” do not mean

that a “car is like a train”). MDS resolves this by seeking

the best global embedding that is consistent with all state-

ments. The method is also impractical for many categories,

because we do not expect to have much detailed pairwise

similarity information.

In this paper, we exploit category similarity on a category

by category basis. If we wish to learn a model of a “serval”,

we obtain a short list of similar categories from a human

labeller; this would contain “leopard”. We could just use

these “leopard” instances as positive examples to train the

model. This is not attractive, because the two categories

are not the same. Worse, for many categories there may be

nothing that is strongly similar. Our labeler marks “lamp”

and “flower” as similar to “ceiling fan”. These categories

are similar enough to be helpful, but so different that we

cannot mix them together.

Due to the uncertain degree of closeness between a target

object class and its similar categories, we argue that labeled

similar categories are just more similar to the target object

than to other categories. For simplicity, we call these less

similar categories as “dissimilar categories” from now on.

Our method uses similarity constraints as a form of regu-

larization during learning. We require that the object model

should respond more strongly to examples of similar cate-

gories than to examples of dissimilar categories. For exam-

ple, to learn a model of “serval”, we obtain a few similar cat-

egories (e.g. “leopard”) and some dissimilar categories (e.g.

“grass” and “bird”). Then we require the model to respond

more strongly to “leopard” than to “grass” and “bird”. This

process acts as a category dependent similarity regularizer.

We use this category dependent similarity regularization

in a kernel machine framework [12]. It reduces the dimen-

sions of the function space for learning. We show that doing

so leads to significant performance improvements in hard

discrimination tasks, trained with very little data.

Objects might be similar in different ways, for example,

a “zebra” is similar to a “horse” in shape, but similar to

“crosswalk” in texture. For each aspect, we label similar

and dissimilar categories and train a regularized kernel ma-

chine. Learned kernel machines are combined as the final

output.

The following papers are relevant to our work. Fei-

Fei et al [7] exploit the tendency of object models to be

similar to one another with a strong prior. Discriminative

scores can provide more stable features, so fewer examples

are required to learn a model [24]. There may be writ-

ten descriptions of the object to be named, which can be

exploited if the object is modelled in terms of attributes,

properties of objects that can be observed and help describe

them [6, 14, 13, 18, 23]. None of this work can exploit the

comparative similarity of object categories.

We introduce our approach in Section 2. Experimental

settings and results are shown in Section 3. Conclusions are

made in Section 4.

2. Learning object models with comparative

similarity

We assume we wish to learn a model to identify a named

object. We have few or no positive training examples, many

negative examples, and some categories identified as “sim-

ilar” or “dissimilar”. We first show how to incorporate this

information into the training process for a kernel machine.

We then show how to evaluate different aspects of similarity

(e.g. similarity in color; in texture; and so on).

2.1. Incorporating comparative similarity into
training

We aim to learn an object model F for each name. We

follow [27, 15] and use a kernel machine. Write F =∑N

i=1 K(xi, •), where K(xi, •) is a kernel basis function

(we use a histogram intersection kernel). We have a set of T

training examples in a feature representation {(xt, yt), t =
1, ..., T, yt ∈ {+1,−1}}.

The usual procedure is to learn F by minimizing:

1

T

T∑

t=1

L(F (xt), yt) +
λ

2
‖F‖2 (1)

where λ
2 ‖F‖2 is a regularization term, and L is the hinge

loss L(F (xt), yt) = max(0, 1 − ytF (xt)). However, ac-

curate learning requires numerous positive examples (see

section 3).

We do have examples from categories that are similar to

the name we seek to learn. A simple approach is to use these

as positive instances; we use this approach as a baseline (see

section 3). When we append them as positive instances, we

weight them with a parameter in the similar form of Equa-

tion 3.

A good object model would respond strongly to what-

ever positive examples there happen to be, but would also

respond more strongly to similar examples than to dissim-

ilar examples. This lends the problem an ordinal character

— our method should rank similar examples more highly

than dissimilar examples, rather like an ordinal SVM [11].

Ordinal SVM attempts to learn a function h(x) such that

h(xi) > h(xj) for any pair of examples where rank(xi) >

rank(xj). However, we do not have a full ranking of all

examples, so cannot use a conventional ordinal SVM.

Our model F should: be positive for positive instances;

be negative for negative instances; and be larger for sim-

ilar instances than for dissimilar instances. The first two

requirements are straightforward to express with the hinge

loss. For the third, if gs
n is an instance from a similar cate-

gory and gd
n is an instance from a dissimilar category, F (gs

n)
should always be larger than F (gd

n), with some margin.

We impose this constraint by preparing a set of N similar-

dissimilar pairs, and scoring L(F (gs
n)−F (gd

n), 1), where L

is the hinge loss. This acts as a regularization term. There

could be very many pairs. If there are many positive ex-

amples, then the similarity constraint is less significant, but

if there are few, it is an important constraint. This means

the weight placed on this similarity term should depend on

the number of positive examples Tp. We must choose F to

minimize

1

T

T∑

t=1

L(F (xt), yt) + α(Tp)
1

N

N∑

n=1

L(F (gs
n) − F (gd

n), 1)

+
λ

2
‖F‖2 (2)

where α(Tp) represents the weight on similarity as a func-

tion of the number of positive training examples. The first

term is the empirical loss of the target category, the second

term imposes similarity constraints (it is also considered to

be a regularization term), and the third is the conventional

regularizer. Generally, if there are few positive examples,

α(Tp) should be large, and if there are many, it should be

small. We use

α(Tp) =
A

1 + eB(Tp−C)
(3)

where A, B and C are parameters chosen by a cross val-

idation procedure applied to set of categories, which have

multiple training instances. These parameters are fixed for

all other categories. Training is by stochastic gradient de-

scent; details in section 2.3. The resulting F is a ranking

function.

2.2. Learning with aspect based similarity

Objects might be similar in different ways, which are

called aspects in this paper. Using aspect based similarity

could: (1) help human labelers to label similar categories;

(2) help design object representation (e.g., if two objects

are similar because of color, we should use color features to

represent objects and learn F). We have three types of as-

pects: texture, shape and scene. We label different similar

categories and use different features for different aspects:

SIFT words for texture, pyramid HOG for shape, and SIFT

words on the image for scene. More details can be found in

Section 3.2.

Using the idea described in the above section, we train a

kernel machine for each aspect of similarity. Each produces

a ranking function Fa for a particular aspect a. We can

get better results by combining responses produced by mul-

tiple aspects based similarity. We calibrate the responses,

then sum them to obtain an overall ranking. Calibration is

important, because the same degree of similarity might get

different values of ranking function for different aspects.

We calibrate by applying a linear transformation to the

ranker output so that the strongest (resp. weakest) response

on a dataset is 1 (resp 0). The same dataset is used for

each aspect, so that the same number of positives should

be present in each case, but labels are not known. Again, no

more complex procedure is possible, because we have few

positive examples.

We linearly combine the calibrated classification re-

sponses. The combinations weights are learning using vali-

dation on categories with multiple training instances.

2.3. Training

To train the models, we use a stochastic gradient

descent method [12, 24]. Stochastic gradient descent

selects some terms in the objective function at random

and takes a small step in a direction that will minimize

them. Our terms could be either loss at a labelled example,

or loss for a similar-dissimilar pair. The algorithm becomes:

At the ith iteration, select a single loss term at random:

1. If this is loss at a labelled example xt, then follow the

procedure of [12, 24]. The update is:

Fi = (1 − ληi)Fi−1 +
1

T
ηiσiytK(xt, •) (4)

Where σi =

{
1 if ytFi−1(xt) < 1
0 otherwise

2. If we have a similar-dissimilar pair {gs
n, gd

n}, the term

Ô for that pair is

1

N
α(Tp)L(F (gs

n) − F (gd
n), 1) +

λ

2
‖F‖2 (5)

and the gradient ∂ bO
∂F

|F=Fi−1
is:

1

N
α(Tp)σi(K(gd

n, •) − K(gs
n, •)) + λFi−1 (6)

where σi =

{
1 if Fi−1(g

s
n) − Fi−1(g

d
n) < 1

0 otherwise
and

the update becomes

Fi = (1 − ληi)Fi−1 +
1

N
αηiσi(K(gs

n, •) − K(gd
n, •)) (7)

We use a histogram intersection kernel for K , allowing us

to use the fast training algorithm of [24]. We modify their

public training code to learn our models; an alternative is to

use the method of [17].

object similar categories dissimilar categories similarity type

shrub flower, grass, hedge bowl, vas, bottle, umbrella synonymous

number text tv, sink, box, bush synonymous

body torso grass, road, motorbike, hedge nearly synonymous

picture frame painting towl, bed, floor, sofa, bush nearly synonymous

plant pot bowl rug, sign, sand, door different

bird house box, book flower, sofa, floor, motorbike different

gloves curtain, flag grass, desk, door, bottle very different

fireplace fence, railing step, path, bicycle, snow very different

Table 1. Example categories and their general similarity annotation. The similarity type is labeled by a second volunteer.

3. Experiments

3.1. Procedures

Dataset: We use 2831 images from Labelme [20] as a

test bed. Object regions are fully annotated within images.

We manually reword the object names by correcting mis-

spelled words, removing non-noun words (e.g., “a”), and

passing to the most common nouns (e.g., replacing “pedes-

trian walking” with “person”). This leaves 972 object cate-

gories in total.

As Figure 1 shows, the distribution of object categories

in our dataset are heavily long-tailed (which is also sus-

pected to be true in the real world). Around 600 categories

have less than 6 instances. Only 70 categories have more

than 100 instances. We randomly select 1,500 images as

training data and the other 1,331 images as test data.

General similarity annotation: We select 90 object cat-

egories, which have more than 60 instances, as prototype

categories. We use 225 test categories, each of which has

at least one test instance. For each category, a human vol-

unteer identified up to five similar objects from these proto-

type categories without seeing any images from the dataset.

In this labeling procedure, no extra instructions are given

on which aspect (e.g., shape or texture) should be used to

judge similarity. So it is called “general similarity”, in con-

trast with the “aspect based similarity” described below.

This work was checked by a second volunteer, who

broke the similarity judgements into four cases: synony-

mous (e.g. category “beach rock” and prototype “rock”);

near synonymous (e.g. “worktop”; “bar counter”); differ-

ent (e.g. “bird”; “flag” — the labeller felt both flap in the

sky); and very different (e.g. “ceiling fan”;“flower”). More

examples on similarity annotation are shown in Table 1.

Aspect based similarity: In addition to the general sim-

ilarity labeled for 225 categories, we also label aspect based

similarity for 50 categories. As mentioned before, there

are three types of aspects: texture, shape and scene. The

similarity is also labeled without seeing any images in the

dataset. Scene similarity is obtained by finding prototype

objects which tend to appear in the same scene (scene types

are mainly restricted to “indoor” or “outdoor”) . All im-

ages containing instances of these prototype objects are of

similar scenes.

3.2. Features and parameters

For general similarity and texture similarity, we repre-

sent objects as a 800-dimensional histogram of SIFT [16]

words. For scene similarity, we also represent images as

a 800-dimensional histogram of SIFT words. For shape-

based similarity, we use the PHOG (for Pyramid of His-

tograms of Orientation Gradients) described in [3].

We use around 20,000 negative examples and 20,000

pairs of similar-dissimilar examples to train the models.

When training the kernel machines, the learning rate ηi is

set to be 1
i+100 , and λ is set to be 0.00005. It usually takes

50 ∼ 120 seconds to train one object model.

When training one object model, all the other classes are

used as negative. In the test procedure, we classify each test

image region and output a classification score. AUC values

are calculated for each class. Since our goal in this paper

is to investigate how similarity helps to categorize uncom-

mon objects rather than detect objects as in [8], we directly

use the ground truth segmentations of test images to extract

object regions. There are 21,803 test regions in total.

3.3. Baselines

We compare our algorithm with two baselines. Baseline

1 uses all available positive and negative examples in the

usual way. If there are no positive examples, it outputs a

random guess. Baseline 2 uses instances from similar cate-

gories as positive examples (weighted with a weight in the

similar form of Equation 3). For aspect based similarity,

each baseline is obtained as described for each aspect.

3.4. General similarity improves AUC

If we present a method with one positive and one nega-

tive example, area under the receiver operating curve (AUC)

gives the probability the method will correctly identify

them. AUC is a good measure of performance for a task like

naming with few examples. Instead of using the standard

AUC, we adopt a balanced AUC, where each test example

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Baseline 1 Baseline 2 Our method

Averaged AUC on all the categories

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Baseline 1 Baseline 2 Our method

Averaged AUC on categories with no training examples

Figure 2. General similarity improves AUC, even when there are no ex-

amples. On the left, AUC averaged over all the 225 test categories for

baselines and for our method; on the right this comparison for the 110 test

categories which have no positive examples, both with standard error bars.

is weighted by 1
N

(N is the total number of test instances

from the same category). This can better measure how well

the learned models are against all the other categories rather

than against some super common categories. Our general

similarity method produces strong improvements in AUC

for all test categories, especially when there are no positive

examples (Figure 2). AP is a less helpful measure, because

there are very few positive examples and approximately 20,

000 negative examples so all scores are very small and un-

stable.

We also show some qualitative results in Figure 3. Our

method gets better AUC values and ranks more sensible re-

gions on the top.

Our method can reach very high AUC scores on many

categories even they have no training examples. Figure 4

shows the number of categories (from the 110 categories

with no training examples) whose AUC values exceed a set

of AUC thresholds. More than 40 categories have bigger

AUC values than 0.9.

This effect is not purely due to synonymy in the la-

bels. We sort categories by the strongest similar prototype

(strongest: synonymous to weakest: very different). Over-

all, there are 53 categories with at least one synonymous

similar prototype; 70 categories with at least one near syn-

onymous similar prototype and no stronger; 90 categories

with at least one different similar prototype and no stronger;

and 12 categories which have only very different similar

prototype. We show average AUC scores for each type in

Figure 5. We can see that even if the similar prototypes

are at best “different” or “very different”, using similarity

yields a better AUC.

The number of similar classes for our examples ranges

from one to three, with a very few categories having more.

We investigated the effect of the number of similar classes

on the improvement in AUC, but found no effect. We be-

lieve that it is the quality of labeled similar categories that

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

AUC threshold

N
u

m
b

e
r

o
f

ca
te

g
o

ri
e

s

Our method

baseline 2

 Number of categories exceeding AUC threshold

Figure 4. Number of categories for which AUC is greater than a threshold.

These categories have no positive training examples. The x-axis denotes

the AUC thresholds. The y-axis denotes the number of categories whose

AUC values exceed the thresholds. There are more than 40 categories with

bigger AUC values than 0.9 using our method. Our method consistently

gets more categories than baseline 2 in the high AUC area. Note that some

categories have AUC values smaller than 0.5, because the AUC is unstable

when there are only few positive test examples.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

synonymous
 nearly

synonymous
di!erent

 very

di!erent

Averaged AUC values for di!erent similarity types

baseline 1 baseline 2 Our method

Figure 5. General similarity improves average AUC score; the effect is

not due to synonymy. We show the average for all categories with at least

one synonymous similar prototype; all with at least one near synonymous

similar prototype and no stronger; all with at least one different similar

prototype and no stronger; and all which have only very different similar

prototype. Note there are across the board improvements, which are strong

compared to error bars.

matters rather than the number of similar categories.

3.5. Aspect based similarity improves AUC

We test Multi-aspect similarity on 50 categories (mainly

indoor objects such as bookcase and dish towel). When

Object name:

house plant

Number of training instances:

0

Similar objects:

bush, �ower

Dissimilar objects:

ceiling, ground, book, table

0 0.2 0.4 0.6 0.8 1
0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC

0.1

629/21803

0 0.2 0.4 0.6 0.8 1
0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC

0.1

1355/21803

Object name:

kitchen cabinet

Number of training instances:

1

Similar objects:

bench, cabinet, cupboard,

Dissimilar objects:

worktop, ground, rug, umbrella

0 0.2 0.4 0.6 0.8 1
0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC

0.1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC

0.1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC

0.1

487/21803

1203/21803

16058/21803

No baseline 1 (No training examples)

Our method

baseline 2

baseline 1

Our method

baseline 2

Figure 3. Classification results for two categories. For each category, the first row shows results using our method; the second row shows results using

baseline 2; the third row shows results using baseline 1 (if there are positive training examples). At each row, the first figure shows the ROC curve; the

second image shows the top ranked positive test instance (for each of these two object classes, there is only one positive test instance), the number above

the image shows the rank (out of 21,803 test instances); the following five images show top ranked test regions. Our method gets better AUC (rank) than

baseline 2 and baseline 1. It also ranks more reasonable regions on the top.

combining classification scores from different aspects, we

first calibrate them as introduced in Section 2.2. Then we

weight them linearly. The weights are learned using valida-

tion set on 5 categories, which at least 2 training examples.

The learned weights are 0.554, 0.341 and 0.106, for texture

aspect, shape aspect and scene aspect respectively. The re-

sults are shown in Table 2. Combining cues from different

aspects helps. The scene cue is useful, especially for objects

which only appear in specific scenes. If one object appears

in very diverse scenes (such as “person”), the scene cue is

not going to help.

Within these 50 categories, there are 27 categories which

are also labeled with the general similarity. The average

AUC of these 27 categories are compared in Table 3.

3.6. General similarity improves correspondence

An improvement in AUC is very helpful in finding cor-

respondence between regions and weakly labeled object

names [1].

We choose 197 images from the test set which have at

least three regions from any of our 225 test categories. Their

T Sh Sc T+Sh+Sc

0.735 0.725 0.686 0.783

Table 2. Average AUC values on 50 categories for different aspect sim-

ilarity and their combinations. “T” denotes the result using texture based

similarity, “Sh” denotes the result using shape based similarity, “Sc” de-

notes the result using scene based similarity. Combining multiple aspects

helps.

G T Sh Sc T+Sh+Sc

0.769 0.748 0.702 0.653 0.771

Table 3. Average AUC values on 27 categories for general similarity, dif-

ferent aspect based similarity and their combination. “G” denotes the result

using general similarity. Combining multiple aspects works comparably

well.

labels are weakly labeled, meaning that we don’t know

which label goes to which region. Our task is to use the

learned models to establish the correspondence.

We solve for correspondence with a maximum weight

bipartite matching (using the Hungarian algorithm [19]),

where weights are given by calibrated classification scores.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

baseline 1 baseline 2 Our method

0 [1, 5) [5, 10) [10, +Inf)

Average matching accuracy on categories by number

 of training instances

Figure 6. Average matching accuracy on categories by number of train-

ing instances. On the categories with zero or few training examples, using

similarity helps a lot. Our method also gets better results than baseline 2.

Baseline 1 Baseline 2 Our method

0.440 0.486 0.535

Table 4. Average matching accuracy using classification scores by differ-

ent methods. The accuracy is averaged over categories. Using our method

can establish better correspondence.

The matching results are region labels. We calculate match-

ing accuracy for each class. The values are averaged for

comparison to avoid effects of large categories (see Ta-

ble 4).

In Figure 6, we show the average accuracy values on cat-

egories by the number of training instances. Our method

gets a large improvement on categories with zero or few

training instances. This is important because the distribu-

tion of objects in the real world is long-tailed. Correspon-

dence examples are shown in Figure 7.

4. Conclusion and discussion

An opportunistic model of comparative object similarity

that acts as a category dependent regularizer produces sig-

nificant improvements in AUC and correspondence for hun-

dreds of categories with few or no training examples. The

model is wholly general and should apply to a wide variety

of problems.

One problem of the current approach is that learned mod-

els might confuse test instances from similar categories with

target ones. One potential solution is to partition categories

using taxonomy [2, 21], or using scenes: are the objects

found in kitchen or in park? For each object class, we only

need to train a model that is against categories from the

same partition. Then we can choose similar categories from

other partitions to avoid the confusion.

We also plan to extend our aspect based similarity ap-

proach by combing it with the visual attributes ideas [6, 14].

Visual attributes define more specific aspects.

5. Acknowledgement

The authors would like to thank Jiahui Shi’s help for this

project.

This work was supported in part by the National Science

Foundation under IIS-0534837 and 0803603 and in part by

the Office of Naval Research under N00014-01-1-0890 as

part of the MURI program. Any opinions, findings and con-

clusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect those of

the NSF or the ONR.

References

[1] K. Barnard, P. Duygulu, D. Forsyth, N. de Freitas, D.M. Blei, and

M.I. Jordan. Matching words and pictures. JMLR, 2003. 6

[2] E. Bart, I. Porteous, P. Perona, and M. Welling. Unsupervised learn-

ing of visual taxonomies. In CVPR, 2008. 7

[3] A. Bosch, A. Zisserman, and X. Munoz. Representing shape with a

spatial pyramid kernel. In CIVR. ACM, 2007. 4

[4] Daphna Weinshall David W. Jacobs and Yoram Gdalyahu. Classifi-

cation with nonmetric distances: Image retrieval and class represen-

tation. In PAMI, 2000. 1

[5] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing objects

by their attributes. In Proc. CVPR, 2009. 2, 7

[6] L. Fei-Fei, R. Fergus, and P. Perona. One-Shot learning of object

categories. PAMI, 2006. 2

[7] P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively

trained, multiscale, deformable part model. CVPR, 2008. 4

[8] R. Fergus, Y. Weiss, and A. Torralba. Semi-supervised Learning in

Gigantic Image Collections. In NIPS, 2009. 1

[9] A. Frome, Y. Singer, F. Sha, and J. Malik. Learning globally con-

sistent local distance functions for shape-based image retrieval and

classification. In Proc. ICCV, 2007. 1

[10] R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank

boundaries for ordinal regression. In KDD, 2002. 2

[11] J. Kivinen, AJ Smola, and RC Williamson. Online learning with

kernels. IEEE Transactions on Signal Processing, 52(8):2165–2176,

2004. 2, 3

[12] N. Kumar, A.C. Berg, P.N. Belhumeur, and S.K. Nayar. Attribute

and Simile Classifiers for Face Verification. ICCV, 2009. 2

[13] C.H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect

unseen object classes by between-class attribute transfer. In Proc.

CVPR, 2009. 2, 7

[14] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features:

Spatial pyramid matching for recognizing natural scene categories.

In CVPR, 2006. 2

[15] D.G. Lowe. Distinctive Image Features from Scale-Invariant Key-

points. IJCV, 60(2):91–110, 2004. 4

[16] S. Maji and A.C. Berg. Max-Margin Additive Classifiers for Detec-

tion. ICCV, 2009. 3

[17] M. Palatucci, D. Pomerleau, G. Hinton, and T.M. Mitchell. Zero-

Shot Learning with Semantic Output Codes. In NIPS, 2009. 2

blind

Kitchen cabinet

drawer

stool

artwork

counter

 handle

 glass table

 handle
 picture

 frame

doorway

 wall

ceiling fan

 frame

 wall

 mouse

 monitor

 monitor

 mouse

keyboard

drawer

 artwork

counter

blind

kitchen cabinet

 stool

glass table

 handle

 doorway
 picture

 frame

 handle

 wall

ceiling fan

 frame

 wall

keyboard

 monitor

 monitor

 mouse

 mouse

artwork

 blind

counter

drawer

kitchen cabinet

 stool

glass table

 handle

doorway
 picture

 frame

 handle

 wall

 frame

 ceiling fan

 wall

 monitor

 keyboard

 monitor

 mouse

 mouse

Matching using the classi!cation scores of baseline 1

Matching using the classi!cation scores of baseline 2

Matching using the classi!cation scores of our method

Figure 7. Examples showing found correspondence between regions and weak class labels. On each image, regions are depicted by polygons in different

colors, the found corresponding class names are surrounded by squares in the same colors. Incorrect correspondence is indicated with red object names.

Each column shows comparison on the same image. For the first three images, using classification scores by our method find better correspondence. This is

mainly because many categories such as “artwork” and “ceiling fan” have few or no training examples, the baseline classifiers cannot learn good models for

them. Our method doesn’t work well on the fourth image, because “mouse” and “keyboard” have strong similarity correlation (their similar categories are

both labeled as “book” and “box”). One mouse (keyboard) model trained with similarity may be more likely to confuse keyboard (mouse).

[18] C.H. Papadimitriou and K. Steiglitz. Combinatorial optimization:

algorithms and complexity. Dover Pubns, 1998. 6

[19] B.C. Russell, A. Torralba, K.P. Murphy, and W.T. Freeman. La-

belMe: a database and web-based tool for image annotation. IJCV,

2008. 4

[20] J. Sivic, B.C. Russell, A. Zisserman, W.T. Freeman, and A.A. Efros.

Unsupervised discovery of visual object class hierarchies. In CVPR,

2008. 7

[21] A. Tversky et al. Features of similarity. Psychological review, 1977.

2

[22] G. Wang and D. Forsyth. Joint learning of visual attributes, object

classes and visual saliency. In ICCV, 2009. 2

[23] G. Wang, D. Hoiem, and D. Forsyth. Learning Image Similarity

from Flickr Groups Using Stochastic Intersection Kernel Machines.

In ICCV, 2009. 2, 3

[24] K.Q. Weinberger and L.K. Saul. Distance metric learning for large

margin nearest neighbor classification. JMLR, 10:207–244, 2009. 1

[25] E.P. Xing, A.Y. Ng, M.I. Jordan, and S. Russell. Distance metric

learning with application to clustering with side-information. NIPS,

pages 521–528, 2003. 1

[26] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid. Local fea-

tures and kernels for classification of texture and object categories:

A comprehensive study. IJCV, 73(2):213–238, 2007. 2

