
Computer Vision for Music Identification

Yan Ke1, Derek Hoiem1, Rahul Sukthankar1,2

1School of Computer Science, Carnegie Mellon; 2Intel Research Pittsburgh
{yke,dhoiem,rahuls}@cs.cmu.edu

http://www.cs.cmu.edu/˜yke/musicretrieval/

Abstract

We describe how certain tasks in the audio domain can
be effectively addressed using computer vision approaches.
This paper focuses on the problem of music identification,
where the goal is to reliably identify a song given a few
seconds of noisy audio. Our approach treats the spectro-
gram of each music clip as a 2-D image and transforms
music identification into a corrupted sub-image retrieval
problem. By employing pairwise boosting on a large set of
Viola-Jones features, our system learns compact, discrim-
inative, local descriptors that are amenable to efficient in-
dexing. During the query phase, we retrieve the set of song
snippets that locally match the noisy sample and employ ge-
ometric verification in conjunction with an EM-based “oc-
clusion” model to identify the song that is most consistent
with the observed signal. We have implemented our algo-
rithm in a practical system that can quickly and accurately
recognize music from short audio samples in the presence
of distortions such as poor recording quality and signifi-
cant ambient noise. Our experiments demonstrate that this
approach significantly outperforms the current state-of-the-
art in content-based music identification.

1. Introduction
At first glance, problems in the audio domain may appear to
have little relevance to computer vision. The former deals
with processing 1-D signals over time while computer vi-
sion tends to focus on the interpretation of one or more
2-D images (typically captured from a 3-D scene). How-
ever, we believe that certain problems in the audio domain
transform very naturally into a form that can be effectively
tackled by computer vision techniques. This belief is moti-
vated by the observation that audio researchers commonly
employ 2-D time-frequency representations, such as spec-
trograms, when analyzing sound or speech. Traditionally,
these representations are treated as images only for visual-
ization purposes. Our approach is to apply current computer
vision techniques, such as boosted classifiers [17] and local-
descriptor based object recognition [11], to these “images”.
This paper evaluates the merits of this approach in the con-

text of a real-world audio application: music identification.
The goal of music identification is to reliably recognize

a song from a small sample of noisy audio. For instance, a
user may wish to identify the music playing on her car radio
or in the background at a party. She could send a few sec-
onds of the audio using her mobile phone to a music iden-
tification server and receive a text message with the title of
the song. This problem is challenging for several reasons.
First, the query can be significantly corrupted by the distor-
tions induced by typical portable recording devices or due
to noise from ambient sounds. Second, the audio sample
from the query will typically match only a small portion
of the target song, such that a traditional digital signature
computed over the query is unlikely to match the signa-
ture of the entire song. Third, a practical music identifi-
cation system should scale, both in accuracy and speed, to
databases containing hundreds of thousands of songs. Re-
cently, the music identification problem has attracted con-
siderable attention, both from commercial companies [1–3]
and researchers [4, 8]. However, the task remains challeng-
ing, particularly for noisy real-world queries.

We cast music identification into an equivalent sub-
image retrieval framework: identify the portion of a spec-
trogram image from the database that best matches a given
query snippet. We first transform the audio data into a spec-
trogram image and compute local descriptors over the spec-
trogram for overlapping time intervals. Using these descrip-
tors, we then efficiently retrieve candidate matches for the
query. For each candidate, we use RANSAC [5] to tem-
porally align the candidate to the query and compute the
likelihood that the aligned candidate matches the query. In
Section 2, we describe a broad set of filters suitable for our
task. By applying a novel pairwise boosting algorithm, we
select a compact subset of these filters, as described in Sec-
tion 3. Section 3, also describes our model for computing
the likelihood of a candidate match and our use of the EM
algorithm to accommodate noise and interference. We dis-
cuss our retrieval process in Section 4 and provide imple-
mentation details in Section 5. Section 6 describes our ex-
periments and compares our method to recent work in music
identification. Section 7 summarizes our contributions and
outlines directions for future work.



2. Representing Audio as Images
Given a short segment of distorted audio data, we would like
the music identification system to quickly find the matching
segment of undistorted audio in a large database. The sys-
tem should meet the following performance requirements:
high recall, high precision, query using short audio clips,
and fast retrieval. To achieve high recall, its representa-
tion must be sufficiently descriptive to distinguish between
similar-sounding songs. High recall, on the other hand, de-
mands that the representation also be highly resistant to
distortions caused by background noise or poor recording
quality. For instance, a song played over low-quality speak-
ers and recorded using a laptop’s built-in microphone will
sound significantly different from the same song played
over high-fidelity speakers and recorded using a profes-
sional microphone. Since we want the ability to identify
a song based on only a few seconds of audio sampled at an
arbitrary point in the song, the representation should be lo-
cal and robust to small shifts in time. Furthermore, a music
identification system should scale to large music databases,
returning accurate responses in a few seconds on queries
against hundreds of thousands of songs. This scaling re-
quirement indicates that the representation should be com-
putationally inexpensive and efficiently indexable.

Creating a feature representation that meets all of these
criteria is a challenging task. The original 1-D audio sig-
nal varies widely with small distortions, and perceptual in-
formation is difficult to extract directly (see Figure 1a).
Our approach is to convert the audio signal into a 2-D
time-frequency image (spectrogram), using the short-term
Fourier transform (STFT) [8]. This spectrogram represents
the power contained in 33 logarithmically-spaced frequency
bands, measured over 0.372 s windows in 11.6 ms incre-
ments. In the spectrogram image, corrupted audio bears
some visual similarity to its original, and the signal dif-
ferences due to different audio sources are more apparent
(see Figure 1b). This motivates our assertion that well-
developed computer vision techniques should enable us to
build good descriptors for our task.

Although the process of converting the time-domain sig-
nal into a spectrogram image illuminates important similar-
ities and differences in the audio, simply comparing spec-
trograms using correlation would be inaccurate and slow.
Instead, we advocate learning a small set of filters whose
responses are robust to expected distortions while preserv-
ing the information needed to distinguish between different
songs. Rather than attempting to manually engineer such
a suitable set of filters, we define a broad class of candi-
date filters and apply machine learning techniques to iden-
tify a small subset that performs well together. To determine
an appropriate family of filters for this task, it is helpful
to examine the characteristics of spectrogram images that
are distinctive (sensitive to the particular song) while be-

Figure 1: Representing audio. Three 10-second snippets
of audio are shown: John Mellencamp original, Waterworld
soundtrack, and John Mellencamp recorded. It is difficult to
determine which snippet matches the song in the waveform
audio representation (a). In the spectrogram images (b),
certain similarities between the two Mellencamp snippets
and distinguishing differences between the Mellencamp and
Waterworld snippets become noticeable. Matching snippets
are easily identified using our learned descriptions (c).

Figure 2: Candidate filter set. We select a compact set
of filters from the filter class designed for object detection
by Viola and Jones. When applied to spectrogram images,
these filters capture important time-frequency characteris-
tics of audio.

ing resistant to expected distortions. These characteristics
include: (a) differences of power in neighboring frequency
bands at a particular time; (b) differences of power across
time within a particular frequency band; (c) shifts in dom-
inant frequency over time; (d) peaks of power across fre-
quencies at a particular time; and (e) peaks of power across
time within a particular frequency band. The proposed filter
family should be able to capture these aspects while oper-
ating along different frequency bands with different band-
widths and over different extents of time. Filters with large
bandwidths and time-widths are more robust to certain dis-
tortions, but filters with short bandwidths and time-widths
can capture discriminative information that the former fil-
ters cannot. If we view the spectrogram as a simple 2-D
grayscale image, we can see that the class of Haar wavelet-
like filters introduced by Viola and Jones for face detec-
tion [17] meets these requirements (see Figure 2).

In our system, each filter type can vary in band loca-
tion from 1 to 33, in bandwidth from 1 to 33, and in time
from 1 frame (11.6 ms) to 82 frames (951 ms) in exponential
steps of 1.5, resulting in a set of roughly 25,000 candidate
filters. From this large candidate set, we select M discrim-
inative filters and corresponding thresholds to generate an
M -bit vector that represents overlapping segments of audio
(see Figure 1c). This vector, called the descriptor, can be
quickly computed using integral images [17] and is suffi-



ciently stable across distortions to enable retrieval by direct
hashing in the database, as described in Section 4. We de-
scribe how to learn the description in the next section.

Of course, a single descriptor cannot contain enough in-
formation to accurately identify the song matching the given
query from among hundreds of thousands of full-length
songs. To represent several seconds of an audio snippet,
we compute descriptors for overlapping windows of audio
every 11.6 ms. Thus, for a ten-second snippet of audio, our
signature consists of 860 descriptors. This signature is the
basis for matching and retrieval, as described in the follow-
ing sections.

3. Filter Selection and Modeling

The previous section described how we can treat the time-
frequency representation of an audio signal as an image and
outlined the set of candidate filters that operate on the spec-
trogram image. This section details our method for select-
ing a subset of those filters (and corresponding thresholds)
to create a compact representation for each local region of
the spectrogram image. The goal is to build a representation
in which an original audio segment and its distorted ver-
sions will generate highly-similar descriptors, while audio
segments from two different songs will generate dissimilar
descriptors. Section 3.1 details how this description can be
learned using an algorithm that we call pairwise boosting.

The descriptors capture only the local similarity between
a pair of short segments of audio. To correctly evaluate the
match between the query snippet and a song in the database,
we need to compute the probability that an entire signature
(the series of descriptors computed on overlapping audio
windows) matches the other.

Additionally, we account for “occlusion” due to back-
ground noise that drowns out the signal or due to a poor
mobile phone connection. We assume that each descriptor
in the signature was generated either by the original song
or by an occluding signal. Section 3.2 describes how we
employ the Expectation Maximization (EM) algorithm [13]
and a simple dependency model to automatically determine
whether a given descriptor in a sequence corresponds to the
song or an occlusion and to compute the likelihood that one
signature matches another.

3.1. Learning Compact Audio Descriptions

Our goal is to build a description that enables us to de-
termine the probability that two (potentially distorted) au-
dio snippets were both sampled from the same position of
the same song. Formally, this entails learning a classifier
H(x1, x2) → y={−1, 1}, where x1 and x2 are two spec-
trogram images and the label y denotes whether the im-
ages derive from the same original audio source (y=1) or

not (y=−1). One popular method of building a descrip-
tion for object recognition is to define a large class of fil-
ters and use Adaboost [6, 15] to select a small subset of
those filters for classification. We apply a novel pairwise
variant of this method. Our classifier is an ensemble of M
weak classifiers, hm(x1, x2), each with an associated confi-
dence, cm. Our weak classifiers are composed of a filter fm

and a threshold tm, such that hm(x1, x2)=sgn[(fm(x1) −
tm)(fm(x2) − tm)]. In other words, if two examples gen-
erate filter response values on the same side of the thresh-
old, they are labeled by the weak classifier as deriving from
the same portion of audio; otherwise, they are labeled as
coming from different audio snippets. Note that this for-
mulation differs from standard Adaboost in that labels are
assigned to pairs of filter responses. Once the weak clas-
sifiers are learned, any spectrogram x can be transformed
into an M -bit vector, allowing fast indexing through hash-
ing techniques (see Section 4).

One way to learn these weak classifiers would be through
the standard Adaboost framework in which, iteratively,
weak classifiers are learned and all of the data is re-
weighted. Such an approach, however, would produce poor
results in this case for the following reason: no weak clas-
sifier can perform better than chance, on average, on the
non-matching example pairs! This may seem an odd as-
sertion, but the proof is summarized as follows. Suppose
we have x randomly drawn from distribution D, a filter fm,
and a threshold tm, such that P (fm(x) < tm) = p, with
0 ≤ p ≤ 1. If we independently and randomly draw two
non-matching examples x1 and x2 from D, then the prob-
ability that x1 and x2 fall on different sides of tm is given
by

P (hm(x1, x2) = −1) = 2p(1− p) ≤ 0.5. (1)

Thus, a pair of non-matching (y=−1) examples will incor-
rectly be classified as matching at least half of the time for a
sufficiently large sample size, violating the weak classifier
condition of Adaboost. We resolve this issue by employing
an asymmetric pairwise boosting algorithm, in which only
the matching (y=1) pairs are re-weighted and the weights of
matching pairs and non-matching pairs are normalized such
that the sum of each is equal to one-half. Our algorithm is
detailed in Figure 3.

From Equation 1, we also note that we can explicitly cal-
culate the probability of error for non-matching pairs for a
particular filter and threshold if we know the distribution
of the filter responses. We observe that this distribution
can be estimated from the single members of the match-
ing pairs, providing two results: (1) the median is the op-
timal threshold for non-matching pairs; and (2) when the
filters are loosely correlated, we do not need non-matching
pairs — providing a two-fold speed-up in training or the
ability to employ a larger training set of matched pairs at



Pairwise Boosting

input: sequence of n examples
〈(x11, x21)〉..〈(x1n, x2n)〉, each with label yi ∈ {−1, 1}
initialize: wi = 1

n , i = 1..n

for m = 1..M
1. find the hypothesis hm(x1, x2) that minimizes

weighted error over distribution w, where
hm(x1, x2) = sgn[(fm(x1)− tm)(fm(x2)− tm)]
for filter fm and threshold tm

2. calculate weighted error:
errm =

∑n
i=1 wi · δ(hm(x1i, x2i) �= yi)

3. assign confidence to hm: cm = log(1−errm

errm
)

4. update weights for matching pairs:
if yi = 1 and hm(x1i, x2i) �= yi, then
wi ← wi · exp[cm]

5. normalize weights such that∑n
i:yi=−1 wi =

∑n
i:yi=1 wi = 1

2 .

final hypothesis:
H(x1, x2) = sgn(

∑M
m=1 cmhm(x1, x2))

Figure 3: Summary of our pairwise boosting algorithm for
learning a hypothesis that can determine whether the mem-
bers of a pair, x1 and x2, belong to the same class (match) or
belong to different classes. Note that the algorithm is asym-
metric in that only the matching example pairs are boosted.
This is necessary because our simple classifiers cannot
achieve better accuracy than chance on the non-matching
pairs and, thus, fail to meet the Adaboost weak classifier
criterion.

no additional computational cost. Experiments reveal that
all thresholds learned by the pairwise boosting are approx-
imately at the median of the filter response distribution and
that approximating non-matching error in this manner has
minimal impact on classification accuracy.

We note that several other researchers have proposed
related pairwise methods for pose estimation, face recog-
nition, and object recognition. Shakhnarovich et al. [16]
independently select the filters that most preserve similar-
ity. Ren et al. [14] learn features for identifying human
motion from silhouette images using this technique. Jones
and Viola [10] select a set of filters using Adaboost, with
weak classifiers based on thresholding the difference of re-
sponses for same-face and different-face pairs. Mahamud
and Hebert [12] model the distance between two data points
as the probability that the points have different labels and
estimate that probability.

Our learned set of filters (M=32 in our implementa-
tion) greatly improves upon the descriptors recently devel-
oped by Haitsma and Kalker for music identification [8].
The Haitsma-Kalker filters compute the difference between
neighboring frequencies at neighboring times. These filters

Figure 4: The simple dependency model assumed by
our system when determining whether the query signature
matches a signature in our database. Each xi is a vector
of bit differences in each descriptor of the signatures. We
assume that each xi is generated either by the music (yi=1)
or by an “occlusion” (yi=0).

are equivalent to the diagonal Viola-Jones filters (Figure 2c)
with a bandwith of 2 bands and a time-width of 2 frames.
After learning our description, we noticed several common-
alities among the filters. One is that the time-widths tend to
be large (usually 54 frames or longer out of a maximum of
82 frames). Filters that have a smaller time-width tend to
have a large band-width. These characteristics support our
belief that filters that have a large extent in a particular di-
mension can “average out” much of the noise and distortion
induced by poor-quality recordings. We also noticed that,
out of the 32 filters, 31 either measure the difference in two
sets of frequency bands at a particular time interval or a peak
across frequency bands at a particular time interval. Thus,
the learned filters are highly robust to noise that affect all
bands intermittently but are more susceptible to distortions
that affect a particular frequency range over long durations.

3.2. Learning an Occlusion Model
The previous section detailed how we learn a description
and a classifier that allow us to determine whether a pair
of descriptors is likely to be generated by distorted versions
of the same original audio. We now describe a method for
matching based on a signature, composed of a series of de-
scriptors, that takes into account that some portions of the
audio may be dominated by noise or interference. We as-
sume that the likelihood that a recorded snippet matches an
original snippet depends on the bit differences of the de-
scriptors in each of the signatures. A snippet from a dis-
torted version of a song in our database is unlikely to be
completely attributed to interference, since some descrip-
tors are much more likely to be generated by a distortion
of the original than by background noise. We use a simple
model, illustrated in Figure 4, to determine whether a de-
scriptor most likely expresses a song from the database or
some other distraction, which we term an “occlusion”. Un-
der this model, we assume that the likelihood of descriptor
being generated by an occlusion depends only on the data
and on whether the preceding (in time) descriptor was gen-
erated by an occlusion.



Formally, we have a signature xr = (xr
1, x

r
2, . . . , xr

n)
composed of n descriptors that is computed from a recorded
or otherwise distorted audio snippet. We model the
likelihood that the signature was generated by a distor-
tion of a particular original snippet with signature xo =
(xo

1, x
o
2, ..., x

o
n) as follows:

P (xr|xo) = P (xr−o) =
n∏

i=1

P (xr−o
i |yi)P (yi|yi−1). (2)

xr−o
i denotes the bit differences between the recorded (xr

i )
and original (xo

i ) descriptors. yi = 1 when the descriptor xr
i

is due to a distortion of the original audio, and yi = 0 when
the descriptor is due to an occlusion that obfuscates the orig-
inal audio. The descriptor difference xr−o

i ∈ {0, 1}M is
an M -bit vector that denotes whether the thresholded fil-
ter outputs of the descriptor from the recording and the
original have the same value. We model the distribution
of xr−o

i as a product of independent, non-identically dis-
tributed Bernoulli random variables. In our implementation,
we select M=32. Thus, we have 66 parameters to estimate:
32 Bernoulli parameters for each of P (xr−o

i |yi = 0) and
P (xr−o

i |yi = 1), and one Bernoulli transition parameter
for each of P (yi|yi−1 = 0) and P (yi|yi−1 = 1). Since,
in our training data, we do not know whether a particular
descriptor is generated by the music or by noise, we need
a method to simultaneously estimate the labels of the data
yi and the parameters. The EM algorithm is the obvious
choice. Under the assumptions of our model, the E- and the
M-steps are straightforward to derive, but we do not display
the equations here due to space restrictions.

For a given query signature xr, we find the signature xo

in our database that maximizes P (xr|xo), as in Equation 2.
Finally, we decide if the query signature matches the most
likely database signature based on

P (xr|xo) > T, (3)

where the threshold T controls the precision-recall trade-
off. This is approximately equivalent to a decision based
on the posterior P (xo|xr), since all xr are approximately
equally likely and since we assume that all database songs
are equally likely to be queried.

4. Retrieval
Using the representation described in the previous sections,
we build signatures for all of the songs in the database. Dur-
ing retrieval, we perform a similarity search for each of the
query snippet’s descriptors against this signature database.
The large size of our database and the high number of
queries required for each snippet motivates us to seek ef-
ficient schemes for similarity search in high-dimensional
(typically 32-bit) descriptor space. A natural choice is

locality-sensitive hashing (LSH) [9], a technique that en-
ables approximate similarity searches in sub-linear time,
particularly since it is so well-suited for the Hamming dis-
tance metric [7]. Our initial experiments using LSH gave
excellent results, but, somewhat surprisingly, we discovered
that our descriptors are so robust that direct indexing, using
a classical hash table, greatly reduced running time without
significantly impacting accuracy. We describe this indexing
approach in the remainder of this section.

We hash all of the signatures into a standard hash table
(keyed by appropriate M -bit descriptors). We define those
descriptors within a Hamming distance of 2 from the given
query to be near-neighbors. These are retrieved with the fol-
lowing sequence of exhaustive probes. First, we probe the
hashtable with the query; this retrieves all matches within
a Hamming distance of 0. Next, we make M additional
probes in the hash, each consisting of the query descriptor
with a single bit flipped; this finds matches at a Hamming
distance of 1. Finally, we repeat this process with every
combination of two-bit flips to retrieve those descriptors at
a Hamming distance of 2. While such an approach may
initially appear to be inefficient, we have observed that it
is significantly faster than LSH for our application because
each probe is so inexpensive and it returns exact rather than
approximate results. We have observed that the use of un-
weighted Hamming distance instead of classifier confidence
as a basis for descriptor similarity is a reasonable approxi-
mation, since we found the confidence values for different
weak classifiers to be nearly equal in our experiments.

Once all of the near neighbors have been found, we need
to identify the song that best matches the set of descriptors
in the query. Rather than simply voting based on the num-
ber of matches, we employ a form of geometric verification
that is similar to that used in object recognition using lo-
cal features [11]. For each candidate song, we determine
whether the matched descriptors are consistent over time.
For this, we use RANSAC [5] to iterate through candidate
time alignments and use the EM score, the likelihood of the
query signature being generated by the same original au-
dio as the candidate signature (Equation 2), as the distance
metric. We have explored two alignment models. The first
assumes that the query can be aligned to the original once a
single parameter (temporal offset) has been determined. In
this case, the minimal set is a single pair of matching de-
scriptors. The second model assumes that the query could
be a temporally scaled (linearly stretched or compressed)
version of the original. This model is defined by two param-
eters (speed ratio and offset) and requires a minimal set of
two matching descriptors. More complicated temporal dis-
tortion models are certainly possible. In practice, we have
found that the first model gives accurate results, particularly
since our query snippets are short. We find that RANSAC
converges in fewer than 500 iterations even in the presence



of significant occlusion. Once all of the retrieved candi-
dates have been aligned, we select the song with the best
EM score, assuming that it passes a minimum threshold.

5. Implementation

The music retrieval application consists of two parts — the
music identification server and the graphical user interface
(GUI), which can run on different machines and commu-
nicate over sockets. We first describe how we generate the
audio signature database, then describe the query phase, and
finally touch on the user interface.

For each song in the database, we build an audio sig-
nature as described below; the same preprocessing is later
used on the query snippet. We first compute the spectro-
gram image, as in [8]. We convert each song into mono
and downsample to 5512.5 KHz. For a CD quality audio
signal sampled at 44.1 KHz, we convolve the signal with
a low pass filter and take every 8th sample. Next, we ap-
ply a short-term Fourier transform with a window size of
2048 samples (0.372 s) with successive windows offset by
64 samples (11.6 ms). We divide the power between 300 Hz
and 2000 Hz into 33 logarithmically spaced bands. This
frequency range corresponds to the range that can be easily
transmitted over mobile phones. We use logarithmic spac-
ing since the power distribution of typical audio is approxi-
mately logarithmic across frequency. Finally, we apply the
32 learned filters and thresholds to get a 32-bit descrip-
tor for every time step (11.6 ms) of the signal; this series
of descriptors is known as the signature. For an average-
length song of 200 seconds, the storage requirement for this
representation is approximately 70KB. We load all of the
descriptors into memory and put them into a hash table,
along with the song id and frame id (temporal offset). Al-
though the main memory implementation works well for a
few thousand songs, other methods may be necessary for
larger databases.

During the query phase, the music identification server
builds a similar set of 32-bit descriptors for the audio snip-
pet. For each descriptor, it finds all descriptors that are
within a Hamming distance of 2 bits (empirically deter-
mined to be a good balance between accuracy and match-
ing speed). Finally, we perform geometric alignment us-
ing RANSAC and find the best match according to the EM
score (Equation 3).

The GUI frontend records audio clips from the micro-
phone and sends the waveform to the server for identifica-
tion. Figure 5 shows a screenshot of our GUI. The bot-
tom left and right panels displays the spectrogram of the
recorded and original songs, respectively. Although the raw
spectrograms look different due to noise and occlusion, one
can see similar structures. The text panel gives the name of
the the song, correctly identified.

Figure 5: Spectrograms for the corrupted query and the cor-
responding region from the correctly-identified song.

6. Evaluation
We present three sets of experiments that evaluate the per-
formance of our system. First, we present results at the de-
scriptor level, showing that our representation far outper-
forms the descriptors described in [8]. Second, we provide
results that demonstrate our system’s accuracy at the song
level. Finally, we show results that explore the effect of var-
ious design decisions and parameter settings.

6.1 Experimental setup

We need to train the two parts of our system: the filters
for extracting descriptors and the EM noise model. Both
requires training data consisting of aligned pairs of filter
outputs. This poses a chicken-and-egg alignment problem:
how can we accurately align noisy recordings to original
songs before learning good descriptions? Our solution is to
bootstrap the learning process with synthetically-distorted
songs, for which the alignment is known. From these we
learn a set of filters that, while insufficiently accurate for
music identification in noisy environments, is suitable for
training data alignment.

The training data consists of 78 songs played through
low-quality speakers and recorded using low-quality micro-
phones, aligned to the originals using the bootstrap filters.
We learned the 32-bit filters and the EM noise parameters as
described in section 3. Next, we recorded test data in a com-
pletely different environment using different microphones,
speakers, computers and recording rooms. The experiments
use two challenging real-world test sets designed to exem-
plify worst-case scenarios. The first consists of 71 songs
played at a low volume and recorded with a distorted mi-
crophone (denoted as “Test A”). The second more difficult
set contains 220 songs captured with a very noisy record-
ing setup (denoted as “Test B”). In many cases, the noise
drowns out the music to such a degree that the song is barely
audible to humans. These recordings were drawn from a
database of 145 albums with 1862 songs spanning a large
variety of music genres including classical, vocal, rock and
pop. Since each query could match up to 1861 false posi-
tives, the baseline accuracy of the tasks was only 0.05%.



 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1e-05  0.0001  0.001  0.01  0.1  1

T
P

 R
at

e

FP Rate

Boosted
H-K Wide

H-K

Figure 6: ROC curve comparing descriptor performance.
Boosted dominates H-K and H-K Wide. Note semi-log scale.

6.2 Descriptor Performance

To test the descriptor performance in isolation, we gener-
ated a data set with approximately one hundred thousand
positive and one million negative examples. The positive
examples were pairs of matching descriptors (from origi-
nals and their corresponding noisy recordings), sampled in
15 second snippets in each of 71 songs from Test A. The
negative examples were pairs of non-matching descriptors
drawn from the same audio data. Three types of descriptors
were tested: Haitsma and Kalker’s descriptor from [8], de-
noted “H-K”; our improvement on H-K as described below,
denoted “H-K Wide”; and our descriptor learned using pair-
wise boosting (denoted “Boosted”). Since all of the descrip-
tors are the same length (32-bits), we varied the Hamming
distance threshold from 0 to 32 to generate the ROC curves
shown in Figure 6. We note that Boosted dramatically out-
performs H-K over the entire ROC curve. We hypothesised
that a reason for the H-K descriptors’ unexpectedly poor
performance is that the filters span only a short time interval
and may therefore be highly susceptible to noise and slight
misalignments. We constructed H-K Wide by extending the
filter width from 2 to 54 frames. As can be seen, our H-K
variant performs significantly better than the original H-K,
but is still consistently dominated by Boosted. These re-
sults validate our belief that pairwise boosting can improve
on manually-engineered descriptors by learning from data.

To enable fast retrieval through direct hashing, we need
to find candidate descriptors using a Hamming distance
of no more than 2 bits. For a 10 second query contain-
ing 860 descriptors, this requires a recall at the descriptor
level of at least several percent to ensure that we find the
matching signature. Table 1 shows our results for Hamming
distances of 3 bits or fewer. At these distances, Boosted
achieves recall rates that are 1–2 orders of magnitude higher
than the recall rates of the engineered H-K Wide descrip-
tion. Consequently, with a Hamming distance threshold of
2 on 10 second queries from Test A, the H-K Wide descrip-

Distance Threshold
0 1 2 3

Boosted 1.1% 5.4% 14.0% 25.2%
H-K Wide < 0.01% 0.09% 0.64% 2.5%
H-K < 0.01%

Table 1: Recall of descriptors with various Hamming dis-
tance thresholds.

0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on
Recall

10 seconds
15 seconds

Figure 7: Song retrieval rate on combined dataset, with dif-
ferent length audio query snippets.

tors cannot obtain a recall of higher than 6%, while Boosted
achieves 92% recall at 97% precision.

6.3 System Performance

Figure 7 presents song retrieval rates on the combined test
sets A and B, with query snippets of 10 and 15 seconds, cor-
responding to 860 and 1290 descriptors, respectively. We
see that the longer query slightly improves retrieval results.
In a practical system, users wish to achieve the desired ac-
curacy using as short a query as possible.

Figure 8 shows results for the individual datasets on
10 second recordings. For Test A, we achieve 90% recall
at 96% precision. Test B is more challenging, but we are
still able to achieve 80% recall at 93% precision.

Figure 9 shows song retrieval rates for Hamming dis-
tance thresholds of 0, 1, and 2 bits on Test A. Performance
improves as we allow more bit errors, but the marginal gain
drops after a distance of 1 while query time continues to in-
crease exponentially, hence our design decision to restrict
near-neighbor descriptor searches to be within 2 bits.

7. Conclusion
This paper demonstrates that computer vision techniques
can make a significant contribution to topical problems in
the audio domain. Our research contributions can be sum-
marized as follows. First, we show how certain audio tasks,



0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Test A
Test B

Figure 8: P-R curves for song-level retrieval on individual
datasets, with 10 second queries.

0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

distance=0
distance=1
distance=2

Figure 9: Impact of Hamming threshold on song retrieval.

such as music identification, can be transformed into famil-
iar 2-D computer vision problems. Second, we propose
a pairwise variant of boosting to learn discriminative de-
scriptors and apply it to a classification problem with thou-
sands of classes. Third, we incorporate our algorithms into a
practical system that quickly and accurately identifies songs
from a few seconds of noisy, distorted audio. Finally, we
demonstrate, using rigorous experiments on real data, that
our system significantly outperforms current approaches in
content-based music identification.

In future work, we will study the scaling properties of
our system by indexing larger music collections. We also
hope to explore the problem of recognizing variants on a
piece of music, such as recordings of the same song by dif-
ferent artists. Additionally, we plan to improve the accuracy
of our algorithm through improved likelihood models. We
believe that computer vision ideas have immediate applica-
bility and direct relevance to many other domains and hope
that this paper encourages computer vision researchers to
explore such opportunities.

Acknowledgments

We would like to thank L. Huston, P. Pillai, J. Campbell,
G. Shakhnarovich, R. Dannenberg and P. Robinson for their
useful feedback on this research.

References
[1] AT&T Wireless. http://www.attwireless.com/.

[2] Musikube. http://www.musikube.com/.

[3] Shazam Entertainment. http://www.shazam.com/.

[4] P. Cano, E. Batlle, T. Kalker, and J. Haitsma. A review of
algorithms for audio fingerprinting. In Workshop on Multi-
media Signal Processing, 2002.

[5] M. Fischler and R. Bolles. Random sample consensus: a
paradigm for model fitting with applications to image analy-
sis and automated cartography. Communications of the ACM,
24(6), 1981.

[6] Y. Freund and R. Schapire. Experiments with a new boosting
algorithm. In Proceedings of International Conference on
Machine Learning, 1996.

[7] A. Gionis, P. Indyk, and R. Motwani. Similarity search in
high dimensions via hashing. In Proceedings of Interna-
tional Conference on Very Large Databases, 1999.

[8] J. Haitsma and T. Kalker. A highly robust audio fingerprint-
ing system. In Proceedings of International Conference on
Music Information Retrieval, 2002.

[9] P. Indyk and R. Motwani. Approximate nearest neighbor –
towards removing the curse of dimensionality. In Proceed-
ings of Symposium on Theory of Computing, 1998.

[10] M. Jones and P. Viola. Face recognition using boosted local
features. Technical Report MERL-TR-2003-25, Mitsubishi
Electric Research Laboratory, 2003.

[11] D. Lowe. Object recognition from local scale-invariant fea-
tures. In Proceedings of International Conference on Com-
puter Vision, 1999.

[12] S. Mahamud and M. Hebert. Minimum risk distance mea-
sure for object recognition. In Proceedings of International
Conference on Computer Vision, 2003.

[13] G. McLachlan and T. Krishnan. The EM Algorithm and Ex-
tensions. Wiley Series in Probability and Statistics, 1997.

[14] L. Ren, G. Shakhnarovich, J. Hodgins, P. Viola, and H. Pfis-
ter. Learning silhouette features for control of human mo-
tion. Technical Report CMU-CS-04-165, Carnegie Mellon
University, 2004.

[15] R. Schapire and Y. Singer. Improved boosting algorithms us-
ing confidence-rated predictions. Machine Learning, 37(3),
1999.

[16] G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose esti-
mation with parameter sensitive hashing. In Proceedings of
International Conference on Computer Vision, 2003.

[17] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In Proceedings of Computer Vi-
sion and Pattern Recognition, 2001.


