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ABSTRACT 
 
The ability to identify sounds in complex audio environ-
ments is highly useful for multimedia retrieval, security, 
and many mobile robotic applications, but very little work 
has been done in this area.  We present the SOLAR sys-
tem, a system capable of finding sound objects, such as 
dog barks or car horns, in complex audio data extracted 
from movies.  SOLAR avoids the need for segmentation 
by scanning over the audio data in fixed increments and 
classifying each short audio window separately.  SOLAR 
employs boosted decision tree classifiers to select suitable 
features for modeling each sound object and to discrimi-
nate between the object of interest and all other sounds.  
We demonstrate the effectiveness of our approach with 
experiments on thirteen sound object classes trained using 
only tens of positive examples and tested on hours of 
audio data extracted from popular movies.  
 
 

1. INTRODUCTION 
 
The ability to identify sound events allows humans to 
listen for cars while crossing the road, notice when the dog 
barks to come in, and infer from the metallic clang that 
Aragorn successfully deflects the Uruk-Hai’s thrown dag-
ger in the film The Fellowship of the Ring.  Similarly, the 
development of sound identification systems is crucial to 
many applications, including multimedia retrieval, secu-
rity, and mobile robotics.  With the ability to automatically 
identify sounds, viewers could search for the action se-
quences in their DVD collections, security infrastructures 
could detect gunshots or cries for help, and mobile robots 
could better understand their environment.   

Despite the breadth and importance of these applica-
tions, little research has been done to enable the identifica-
tion of sounds in complex environments.  Much research 
has been directed towards classifying a short sound clip 
into one of a pre-specified set of categories [1, 4, 6, 7, 11].  
This work is useful for organizing databases of sound clips 
but cannot be directly applied to the task of sound detec-
tion and identification in complex audio environments.  To 

detect a particular class of sound objects, such as dog 
barks, it is necessary to distinguish instances of that class 
from all other possible sounds.  These categorization sys-
tems, however, can only distinguish among a highly finite 
set of sound categories.  Additionally, in order to avoid 
hundreds of false positives per hour, the sound object 
detection system must achieve false positive rates (the 
percentage of incorrectly labeled non-object sounds) of 
well under 1%.  Current sound categorization systems, 
however, typically achieve error rates of between 5% and 
20%.   

Few systems have been developed for the detection 
and identification of sound objects, and these generally 
assume unrealistic conditions.  The system proposed by 
Dufaux et al. [3] achieves excellent results under a white 
noise background but fails under real-world conditions.  
Zhang and Kuo [12, 13] segment audio into voice, music, 
or environmental sound and categorize environmental 
sound segments, but their system has trouble segmenting 
audio in which sounds co-occur with music or voice and 
can only classify among a set of ten narrow categories. 
 

2. SOUND DETECTION 
 

Our goal is to localize and retrieve sound objects such 
as gunshots, dog barks, laughter, sword clashes, laser 
guns, and screams that correspond to particular action 
events.  This task is difficult due to within-class variance, 
background noise, and the large number of sounds that 
could potentially be confused with the object of interest.  
For examples of in-class variance, contrast the laugh of 
Vincent Price with that of Pee-Wee Herman or the shrill 
yap of the Chihuahua with the deep bark of the German 
Shepherd.  In complex audio environments, such as in the 
audio data from movies, background noise is continually 
present and can often drown out the sound object of inter-
est [2].  Since the sound objects occupy a tiny portion of 
the overall audio data, the data must either be segmented 
along boundaries of sound events or evaluated in short 
windows at every possible time location within the data.  
In either case, the sound detection system must be able to 
discriminate between the sound object of interest and all



 
Figure 1. SOLAR avoids segmentation by decomposing audio tracks into short, equal-length, overlapping audio windows.  Each win-
dow is evaluated by a boosted decision tree classifier.  Finally, sound clips containing audio identified as belonging to the object class 
are returned to the user, sorted by classifier confidence. 
 

 
Figure 2. Raw audio data (a) of a meow is converted into a rich feature representation in three steps: (b) Compute the short-time Fourier 
transform (STFT) from 200 Hz to 4 KHz and separate into 16 frequency channels, (c) Represent the STFT as the total power over time 
(bottom) and the percentage of power in each frequency channel over time (top), (d) Extract features representing pitch, loudness, and 
many other audio characteristics from representation in (c).   

 
 
other sounds.  Since the number of non-interesting sounds 
by far outnumbers the number of interesting sounds, a low 
false positive rate is critical. 

We propose the SOLAR system as a solution to sound 
identification in complex audio environments.  We avoid 
unreliable segmentation by performing a windowed scan 
over the audio data.  The windowed scan involves sliding 
a window over the audio data in fixed increments and 
classifying the data contained in each window (see figure 
1).  For instance, if attempting to detect gunshots, the 
system would evaluate audio windows of one half-second 
duration in increments of one-sixteenth of a second, result-
ing in 57,600 windows per hour of audio data.  A classi-
fier with a detection rate of 80% and a false positive rate 
of 1% searching over an hour of audio data containing five 
gunshots would retrieve 580 audio clips, only four of 
which would contain the object of interest.  Thus, highly 
selective classifiers achieving false positive rates of well 
under 1% are necessary for the system to be useful.  

SOLAR achieves high detection rates and low false 
positive rates for many different sound objects by using a 
diverse feature set and boosted decision tree classifiers.  
The features, based on the short-time Fourier transform of 
the data, represent perceptual characteristics such as pitch 
and loudness and non-perceptual information such as the 
approximate band-width of the audio.   

Each audio window is classified as being the object of 
interest if its confidence, as assigned by a learned classi-
fier for that object, exceeds a given threshold.  The classi-
fier is composed of a series of boosted decision trees.  
Decision trees greedily select the best features for dis-
crimination and make decisions based on those features.  
By assigning a confidence to each decision and using 
Adaboost [9] to re-weight training data after learning each 

decision tree, a weighted vote may be obtained from all of 
the decision trees that is more accurate than any single 
decision tree.   

 
3. REPRESENTATION 

 
The feature representation needs to be diverse and dis-
criminative enough to allow the classifiers to distinguish 
between any of a large variety of sound classes and all 
other sounds.  Many researchers in sound categorization 
have found perceptual features such as pitch and loudness 
to be useful [11], and others have shown that a mixture of 
perceptual and non-perceptual features may provide the 
best classification performance [4].  Based on the short-
time Fourier transform (STFT), we provide our classifiers 
with a rich representation capable of modeling a variety of 
classes and useful for discrimination (see figure 2).  

At the most basic level, we represent audio with the 
short-time Fourier transform using hamming windows of 
128 ms spaced every 12.5 ms.  We then divide the fre-
quencies from 200 Hz to 4 KHz into 16 channels.  We 
choose the ranges of the channels such that the average 
power for each channel is approximately equal for typical 
audio data from movies.  These learned range boundaries 
are {200, 240, 290, 350, 410, 480, 580, 670, 780, 870, 
1000, 1170, 1320, 1530, 1870, 2510, 4000} Hz. This 
channeling has higher resolution in the voice range of 400-
1800 Hz and lower resolution in the high frequency range 
than the common logarithmically-spaced channeling.  
After computing the STFT, we divide each frequency-time 
coefficient by the total power at that time.  Our representa-
tion then becomes a 16xT set of coefficients representing 
the percent of power in each frequency channel over time 
and a 1xT set of coefficients representing the total power 
over time, where T is the number of Fourier windows in 
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the audio data.  All features used by the classifiers are 
computed from this 17xT representation.     

We chose the candidate set of 138 features for their 
computational efficiency and for their ability to represent 
distinguishing characteristics of a broad range of sounds.  
Features encode the mean and standard deviation of the 
power percentile in each frequency channel and of the 
total power, bandwidth, the most powerful frequency 
channel, the number of peaks in power over time, the 
regularity of power peaks, the range of the total power 
over time, and time-localized frequency percentiles over 
various frequency ranges.  Some of these features, such 
the mean of the power percentile of the frequency chan-
nels, capture basic audio characteristics that are useful to 
model for all sounds.  Others, such as the range in total 
power over time, are more relevant to some sounds than 
others.  Details of the feature representation are available 
at our web site. 

 
4. CLASSIFIERS 

 
SOLAR’s classifiers are able to choose an appropriate 
feature representation from the set of 138 candidate fea-
tures and to use those features to discriminate between the 
sound object of interest and all other sounds.  SOLAR’s 
high classification performance is achieved through the 
use of two classification techniques: the use of decision 
trees to select discriminating features and the use of 
Adaboost to improve classification with an ensemble of 
trees. 
 
4.1. Decision Tree Classifiers 
 
Decision tree classifiers are used to select features capable 
of discriminating between the object of interest and all 
other sounds [8].  The decision tree is formed by greedily 
choosing the most discriminative feature and making a 
decision based on that feature.  The tree then continues to 
branch out, adding new features at the leaf nodes in order 
to greedily maximize the split between the object and non-
object class until all training examples are correctly classi-
fied.  Typically, the tree is then pruned to improve the 
generalization ability of the classifier.  In forming the 
decision trees, we use the Gini diversity index for the 
splitting criterion and prune the trees to minimize the 
cross-validation error.   
 
4.2. Boosting the Classifiers 
 
A single decision tree may not be complex enough to 
model the differences between objects and non-objects 
without overfitting.  We, therefore, use a standard machine 
learning technique called Adaboost [9] to improve classi-
fication accuracy.  Using Adaboost, we iteratively learn a 
series of decision tree classifiers that focus on the mistakes 
of the previously learned classifiers.  Confidences are 

assigned to the decisions made by each classifier accord-
ing to the class-conditional log likelihood ratio, and the 
final confidence assigned to the label of an audio window 
is given by the sum of the individual classifier confi-
dences.  When evaluating new audio data, windows are 
sorted by confidence so that the user hears the sound clips 
most likely to contain the sound object interest before 
hearing less likely sound clips.  A final classification can 
be assigned based on a confidence threshold.  Using vali-
dation data, this threshold can be chosen to correspond to 
a particular false positive rate.  
 

5. EXPERIMENTS 
 
In our experiments, we attempted to learn models capable 
of identifying thirteen different sound object classes: car 
horns, doors closing, dog barks, door bells, explosions, 
gunshots, laser guns, light sabers, male laughs, meows, 
telephone rings, screams, and sword clashes.  These 
sounds varied widely, from being impulsive (gunshots) to 
nearly monotone (meows) and from periodic (telephone 
rings) to non-periodic (doors closing) and from low fre-
quency (explosions) to high frequency (sword clashes).  
We collected roughly 15-80 positive examples for each 
sound class using www.findsounds.com.  About 1,000 
negative training examples for each object were randomly 
drawn from audio data from movies that did not contain 
the sound of interest.  All positive examples were mixed 
with background noise taken from the movie audio so that 
5-25% of the amplitude was due to noise.  Additionally, 
positive examples that were shorter in duration than the 
window size (fixed according to the median length of 
object training examples) were embedded into background 
noise sampled the movie audio.  Half of the positive ex-
amples were used for training.  The test data was com-
posed of the remainder of the positive examples and about 
one hour of audio per object from movies not used for 
training.  Detection rates were calculated based on the 
confidences assigned to the object examples, and false 
positive rates were calculated based on the number of 
detections in the non-object movie audio data.   
 
5.1. Feature Usage 
 
If a simple feature representation is sufficient to represent 
many different sound objects, we would expect the same 
features to be used consistently throughout the models for 
the different classes.  If, however, having a rich set of 
diverse features is important, we would expect different 
sound objects to use different features.  The mean number 
of features used for classification per sound object was 
45.9 with a standard deviation of 14.8.  Altogether, 133 
out of the 138 features were used in at least one of the 
thirteen sound object classes.  Thus, nearly all of the fea-
tures were useful for at least one class, and different
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10 FP/hr 37% 46% 0% 31% 81% 0% 0% 31% 52% 7% 86% 65% 38% 47% 
50 FP/hr 60% 66% 22% 67% 90% 25% 0% 67% 81% 23% 92% 96% 83% 63% 

100 FP/hr 72% 76% 32% 85% 99% 50% 21% 80% 83% 45% 97% 96% 89% 88% 
Table 1. Sound object detection rates for varying numbers of false positives per hour of audio test data.  For instance, a user willing to 
accept ten false positives per hour of audio could expect SOLAR to find five barks in an audio clip containing fifteen dog barks.  

 
 
features were useful for different classes, indicating the 
importance of having a rich feature set. 
 
5.2. Detection Time 
 
SOLAR evaluates audio at a rate of roughly 24 times real-
time (or about 2.5 minutes per hour of audio data) when 
running in MATLAB® on an Intel® Pentium® IV 3.2 
GHz machine.  This is fast enough for real-time security 
or robotic applications and with optimizations would be 
fast enough for useful multimedia retrieval.  Additionally, 
96% of the processing time is spent on computing fea-
tures, so, if the features were pre-computed, SOLAR could 
run at 600 times real-time (5 seconds per hour of audio 
data).  The system can also take advantage of database 
systems recently developed to allow fast searches over 
non-indexed data [5].  
 
5.3. Detection Accuracy 
 
Table 1 presents the chance of SOLAR identifying one 
particular instance of a sound object if 10, 50, or 100 false 
positives per hour of audio data are allowed.  We use this 
form of displaying results because it reflects the user’s 
experience.  The reader should keep in mind that for each 
hour of audio data, 30,000-60,000 audio windows need to 
be evaluated.  Thus, ten false positives per hour is equiva-
lent to a false positive rate of only 0.0002 to 0.0003.  For 
qualitative results of retrieved sounds for different sound 
objects from movie clip audio data, the reader should visit 
our web site. 
       

6. CONCLUSIONS 
 
We have presented SOLAR, the first system capable of 
finding sound objects in complex audio environments.  
SOLAR uses a windowed scan to eliminate the need for 
segmentation and employs boosted decision tree classifiers 
to achieve excellent performance on many sound objects.  
While SOLAR is able to achieve good results on many 
objects, it performs quite poorly on others such as door 
slams or male laughs (male laughs are often confused with 
male dialogue).  Much of this error is due to lack of con-
text, which could be acquired from other modalities.  We 
hope to extend SOLAR to employ audio information in 
conjunction with visual scene information.     
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