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Abstract

Appearance
Cues

While great strides have been made in detecting and lo-
calizing specific objects in natural images, the bottom-up E
segmentation of unknown, generic objects remains a dif- *=

Motion Cues

ficult challenge. We believe that occlusion can provide a

strong cue for object segmentation and “pop-out”, but de- Global [ Learned ]
tecting an object’s occlusion boundaries using appearance Inference Classifier
alone is a difficult problem in itself. If the camera or the 3 3
scene is moving, however, that motion provides an addi- (Graphical Model]  [Traiming Data)

tional powerful indicator of occlusion. Thus, we use stan-
dard appearance cue®(g brightness/color gradient) in
addition to motion cues that capture subtle differences in
the relative surface motioni.€. parallax) on either side of
an occlusion boundary. We describe a learned local classi-
fier and global inference approach which provide a frame-
work for combining and reasoning about these appearance

and motion cues to estimate which region boundaries of cues have received significant attention in computer vjsion

an initial _ovgr-segmentation correspond to object/ocidos __e.g[3, 17, 22, 47]. Most of these cues can be exploited in
boundariesin the scene. Through results on a dataset which

tai hort vid h labeled boundari q a single image, but ours is a temporal experience, and in-
contains short videos with 1abeled boundaries, we demon-¢ e 5ingly image sequences and video are becoming com-
strate the effectiveness of motion cues for this task.

monplace. Thus another potentially powerful cue, and one
which is well-known in psychophysics, is that of motion —
1. Introduction specifically relative motion discrepancies at depth discon
tinuities. Traditionally studied in controlled laborayoex-
There has been great progress in the last few years inperiments [4, 8, 26, 42], such motion cues have received
recognizingspecific objects in images, but the more general comparatively little attention for the purpose of objecppo
problem ofdetectinggeneral, never-before-seen objects re- outin computer visiore.g [3, 7, 29, 34].
mains a challenge. For example, how may we determine a \We propose to revisit the use of motion cues in extract-
telephone sitting on our desk is an object separate from itsing occluding contours as a step toward identifying object
surroundings, without already knowing what a telephone is? boundaries in a scene, with the hope of eventually enabling
Or as Adelson and Bergen put it [2], how do we distinguish complete segmentation of those objects. We use subtle mo-
the “things” from the “stuff"? tion cues, such as parallax induced by a moving camera,
This problem is variously known as object segmenta- in reasoning about these crucial boundaries which separate
tion, pop-out or figure-ground labeling. The basic prob- “things” in a scene. Here, we will begin with an over-
lem is to extract contours that delineate scene objects orsegmentation of the image, with the assumption that the
alternatively, to extract regions corresponding to olsiect true object boundaries of interest are a subset of the frag-
based on a variety of visual cues estimated from the inputmented boundaries formed by the regions $egmenis
image. Many cues have been proposed in relation to thisin that over-segmentation. Next we will extract a com-
*Partial support provided by a National Science FoundaticadGate bination of appearance and motion cues [39] for the seg-
Fellowship, in addition to the Intelligent Robotics Devaioent Program, ~ Mentsand the contour fragments that separate thdinese
funded by the Korean Ministry of Commerce, Industry, andrgpe cues will in turn generate features for a classifier trained

Figure 1. We develop a framework for object/occlusion baupd
detection combining appearance cues, subtle, instanianao-
tion cues, learned classifiers, and a global inference tgan

problem, most notably those based on the Gestalt principles
Though largely a product of human studies, many of these




to distinguish fragments that are merely surface markingsaries [5, 14, 28, 40]. Our work falls in this general cate-
from those that are object/occlusion boundaries. Finllly, gory in that we do not attempt to precisetyodelthe mo-
learning a notion of fragment connectivity and construct- tion of occlusion boundaries directly. Instead we rely aa th
ing a factor graph to model fragment and junction inter- statistical modeling of (relative) local motion cues atddo
dependencies, we will perform global inference to find the boundaries.

optimal labeling of the fragments jointly. Using this ap- Finally, although we focus in this paper on the use of
proach, we will demonstrate improved object boundary la- motion cues, considerable prior work exists in extracting
beling when (a) using motion information and (b) addition- boundaries from a single image. Two major threads emerge

ally using global inference. from this line of work. The first one is the idea of combining
multiple cues into a single boundary classifier [19, 24, 11].
2. Related Work The second key idea, largely due to Ren [32], is to use the

. . . region boundaries of an image’s (over-)segmentation as ini

Prior attempts to use motion cues to extract object con-yja| candidates to be labeled as occluding/non-occluding,
tours (or object segmentations implying the contours) can e repy inducing a labeling of the regions as figure/ground.
be divided roughly into two groups: those that segment re-\ye pyild upon each of these ideas in our work. We combine
gions directly from the motion input, and those that detect 4y |ocal cues into a single classifier, with the difference
contours via some local computation on the motion data. it e use motion cues in addition to appearance cues. We
The first category includes approaches that attempt t0 in-515q start with an over-segmentation of the image, with the
fer segmentation or scene structure directly from reaspnin 4 of filtering it to retain only those region boundaries
about large-scale occlusions observed through dynamic obsp 4t correspond to physical object boundaries. In addition
ject motion [6, 30] and/or the use of multiple, calibrated \ye yse a novel model for inferring a globally consistent la-
cameras for thamlng sHhouettes [15]. - _ beling of the boundary fragments.

Also in this category is layered motion segmentation,
in which regions are segmented from an input image se-
guence based on the consistency of motion within each re-
gion, e.g [30, 38, 45]. Most of these techniques use a
parametric motion model for each layer, and employ var-
ious techniques for estimating those models and for assign-
ing pixels to the correct layer/model. Typical models are
restricted to near-planar, rigidly-moving regions. In add
tion, many approaches assume a known, fixed number of i =
layers in the scene and/or do not scale well as that numbef'9ure 2. Example input sequence (left), with initial canto
increases. We argue that attempting to explain the scene ir{r.a‘gments and junctions from over-segmentation of cemeané
terms of a specific number of motion-consistent connected right).
regions may not be necessary, and instead we propose to de-
tectalarge fraction of the pbjects’ b(_)undarie_s I_Jy estinga_ti_ 3. Initial Segments and Fragments
local motion cues and using them in a statistical classifier
combined with a mechanism to enforce global consistency. We initially oversegment the image in order to gener-
Quite recently, a method fdrinary segmentation of video  ate candidate boundary fragments and associated regions
was presented which combats some of the difficulties of lay- of support for our motion and appearance features. An-
ered motion segmentation methods by combining clusteredother option could be to start from edge detections and
motion features (akin to the textons popularized by recog-then perform an edge chaining procedure, as in [21, 38]
nition research) with a boosted tree-based classifier [46].  for example. But edge chaining is inherently brittle in nat-

In the second category, techniques have been developedral cluttered scenes, and perhaps more importantly, the
based on the observation that occluding contours can be deever-segmentation approach offers two distinct advarstage
fined as extremal boundaries, where the viewing ray is tan-for later higher-level reasoning. First, by construction,
gent to the object’s surface. This led to the development of fragments come together whenever regions meet, and thus
algorithms that rely on an explicit geometric model of the closed contours are immediately available. This produces
motion of occluding contours [20, 36, 37, 43]. These ap- a natural graph structure suitable for global inferencéwit
proaches are appealing because they rely on well-definedput the need to impose artificially such structure lageg (
mathematically correct, geometric models. However, one with Constrained Delaunay Triangulation [31]). Second, a
drawback is their sensitivity to deviations of the actuabda direct link is established between fragments and segments.
from the model. An alternative is to use an implicit model, Itis clear that a set of segments in an image imply a set of
either learned from local motion cues estimated from train- boundaries, but working in the opposite direction to obtain
ing data or based on some fixed model of the distribu- a segmentation from a set of disconnected boundary frag-
tion of motion cues in the vicinity of occluding bound- ments is non-trivial.




We use a watershed segmentation driven by the output of4.1. Motion Cue 1: Segment Motion
the Pb detector [24] after non-local maxima suppression.

We chose the watershed approach for its more regularly- The segments from Section 3 naturally specify the spa-
dLial support for estimating left- and right-side motions fo

shaped segments as compared to other methods [10, 13 i

and its speed compared to methods relying on normalize ach boundary fragment. Fyrthermore, multiple fragments
cuts [27, 33]. An example over-segmentation can be seen inbou_nd eac_h segment, meaning we can reuse each segments
Figure 2. motion estimate for reasoning about several fragments.

From the over-segmentation, we construct a contour We assume a local translational model of motion for
graph by chaining together a set of fragments along theeach segment and we use the standard Lucas-Kanade op-

boundaries of each segment, starting and stopping atjunC_tlcal flow method for estimating the motion based on lo-

tions with other segments (see Figure 2). Rather than op-::.alI spattljo-ltelzmpora'lt detrlv(.’;;::\./esth WG;] a?stume thallt o_u:jmo-
erating at the level of pixels when chaining, however, we lon modet 1S constant within the short temporal window

instead use the “cracks” between the pixels. These cracksand thus estimate a single motion for each segment using
naturally form a graph and offer a very simple, efficient do- Iits ennre_spauo-temporal extent at once. Thus we have a set
main on which to chain. In addition, a maximum of four of equations to be solved by least squares:

fragments can meet at a junction, limiting the number of Y I _1

junction labeling cases we must consider when doing the v Y { u } _ |t (1)
global inference described later. : : v : ’

4. Computing Cues wheret € {—Tyin,...,0, ..., Twin} represents the frame

Gi i df ts f th tati number relative td, (the reference frame),, andI, rep-
Iven segments and tragments irom the segmentalion, o qo ¢ spatial derivatives within the window g, I, — Iy

the next step is to compute a set of cues associated witr‘hre the temporal differences between framend theT,

each fragment. The cues should be chosen for their IoOten?:\nd(u, v) are the components of the estimated translational

tial utility in estimating the likelihood that a fragmentas motion

an IOCCIUijiq gontour. low-level We employ three techniques to reduce the errors in mo-
N a single Image, many Iow-IeVel appearance CUes ar€y,, astimation due to pixels close to occlusion boundaries

available to indicate boundaries, including differingttes, First, pixels near the boundary of a segment are weighted

color, or brightness. Motion cues are necessary becaus%uch that they contribute less to the solution. Second,

many appearance cues prominentat physmal boundaries e use robustife. iteratively re-weighted) least squares to
also produced by simple surface markings. We use two

; . ; . . : solve (1). Finally, we place a weak prior on small motions,
main motion cues in this work. The first one is based on (1) y P P

: . i ; since the relative motions we seek are quite subtle.
the relative motion of patches extracted on either side of a
fragment [40]. At occlusion boundaries, there may exist an
inconsistency in motion due to parallax induced by the ob-
server’s motion, dynamic objects in the scene, or both. The A second cue that will contribute to the classification of
second motion cue is based on the observation that we cam fragment is the motion of the fragment itself. Since we
compare the segment motions not only to each othetdout do not yet know whether a fragment lies on an occlusion
the motion of the fragments which they neighbBonsider  boundary (that is precisely what we hope to establish), it
the common case in which the foreground side of a bound-would be dangerous to employ local patches of appearance
ary is nearly texture-less and is moving against a cluttereddata {.e. the neighboring segments) to estimate its motion
background. The foreground patch motion may be difficult by simple tracking. Instead, we need to estimate the mo-
to estimate accurately due to the lack of texture, but we cantion of each fragmenindependentiffrom the motion of
still use the fact that the occlusion boundary is “owned” by neighboring segments. This can be accomplished by taking
the foreground surface and should move consistently with advantage of the fact that moving edges sweep out spatio-

4.2. Motion Cue 2: Fragment Motion

it [38]. More practically, it should movimconsistentlyvith temporal surfaces over time [1, 7, 16, 29, 41]. Specifically,
the background patch. By recognizing this discrepancy, weat each position along a fragment, we align the axes of a
can still detect the occlusion. spatio-temporal cylindrical detector to the local oriciota

In this work, we are interested in the estimation and of the edge. By comparing the distributions of intensity and
analysis of the instantaneous motions of fragments and segeolor within each half of the cylinder at variotsmporal
ments. We do not explicitly track either over long periods orientations, we can find the speed of the moving edge in
of time. Instead we consider only a few nearby frames in the direction normal to its spatial orientation. This agmio
a short temporal window around the reference frame un-is a temporal extension of the “compass” filter [25, 35], also
der consideration. Operating on multiple frames simuktane used by thePb detector [24]. It is thus quite similar to the
ously also results in more stable motion estimates via morerecent approach of [41], but since spatial orientationécsp
extended temporal integration of information. ified, only a cylindrical (one-DOF) speed detector is needed



rather than a spherical (two-DOF) speed-plus-orientation The junction potential is evaluated for all junctions de-
detector. pending on the labeling of their constituent fragments, al-
This approach only offers (1D) estimates of normal mo- though we will only specify the three-edgelet junctionseher
tions at each edge pixel due to the aperture problem. Wefor the sake of brevity.
can, however, combine the normal estimates along the frag- Though three edgelets, each with three possible labels,
ment to get a full 2D motion estimate of the whole frag- would imply 27 total possible label combinations for a
ment [12, 44}. In our approach, we again use robust least given junction, there are in fact only five possible config-
squares to solve a linear system of equations: urations (up to circular permutations of the edgelets) once
we rule out impossible cases. These are shown in Figure
3, with the shaded regions indicating foreground, and the

TLIJ nyJ- U w;
: : [ v } =1 . (2)  darkest region being the closest one.

wheren,, ; andn,, ; are the components of the unit normal at

! ( | _ & & & & & & & & &
pointi on the fragment, and; is the corresponding speed
from the spatio-temporal detector.
5. A Global Boundary Model € & & € )el

| | | S (1) am @ v (v
Given appearance information and motion estimates _ o
along fragments and within the segments they separate, oufigure 3. The five types of three-edgelet junctions. The stiae-
goal is to classify which fragments are occlusion bound- 9'nS are the foreground regions, with darker being cldsgcon-
aries. While we hope that local appearance and motion Ention: the foreground region (shaded) is to the lef‘t Of,d'"ec'
. . . . e . tion indicated by the arrow for those edges that are “on”. dfehg
cues will provide strong evidence for this classificatidn, i i no arrow are “off’.
is unreasonable to hope thatparely local solution will
suffice. To capture the structure of our problem and facili-
tate global reasoning and propagation of local estimates, w
define a global model utilizing the graph of contour frag-
ments and junctions implied by the reference frame’s over-
segmentation (Section 3). In the following, we refer to edge
fragments (oedgelety, ¢;, with labels “on” and “off” indi-
cating occlusion and non-occlusion, respectively.
Our objective is to maximiz€r(e|x), the probability of

all the edgelet labels given the cuesextracted from the
data. Given the structure defined by the graph induced by
the over-segmentation, this probability can be written as a
product of factors. Recalling that the use of pixel cracks
advantageously limits the number of fragments meeting at
any given junction to either three or four, each factor cor-
responds either to an individual edgelet or to a junction of
edgelets,

For illustration, let us consider the first configuration
shown in the figure, typé&i). There, the factop must com-
bine two types of information. First; andes are part of the
physical boundary of the occluding region on the left, and
ey precedegs when walking along this boundary. There-
fore, the likelihood of3 being labeled “on” is conditioned
on ¢; also being labeled “on” (and on the cues from the
data). We denote this byr(es = onle; = on,z). The
second term irp measures how likely it is that is an oc-
cluding edge given local evidence, Br(e2 = on|z). The
product of these two terms results in the expression for a
factor of junction typ€), as indicated in Table 1.

A similar reasoning yields the expressions¢ofor the
other junctions types. Note that = 1 for junction type
(#i7) in which none of the edgelets are labeled as occluding
edges, indicating it does not convey any information in the

Pr(elx) oc [ w(es) [ | ¢x (3)  original probability model. Furthermore, in typés)) and
i k (v), the “off” edgelets’ probabilities are not factored inteth
where(e;) represents the potential function for an indi- pote_ntla_ls. For all these cases, tleryfactors will express
vidual edgelet; and ¢, represents the potential function the likelihood of these edgelets being off, so we need not
for the set of edgelets meeting at junctibn{e; },—1. . (double-)count this information in the junction factors.
whereN, € {3,4}. _

The unary potentiali(e;) is defined such that it only Type |Potential ¢)

contributes to (3) it; is labeled “off,” ()  [Pr(es =onle; = on,z)Pr(ez = onz)
(i) Pr(es = onles = on, z) Pr(e; = on|z)

1 e; =on @iy |1
les) = { Pr(e; = of f|z) e; =of f () (iv) |Pr(ez =onlez =on,z)
(v) Pr(es = onles = on, z)
INote that perfectly straight fragments will still only peitrastimation Table 1. Junction potentials corresponding to junctioesyip Fig-

of purely normal motion, but we provide a measure of fragnoemvature ure 3.
to the classifier to help capture this uncertainty (see Se@).




Pr(e|x) can now be computed for any assignment of la- Precision vs. Recall

bels to edgelets: for each junction we find the junctiontype g e Independent Labeling, Motion + Appearance.
induced by the labeling and we use the corresponding ex- | | === After Global Inference, Motion + Appearance
pression ofp to compute the contribution of the junction. OTIN g T Independent Labeling, Appearance Cues Only

The inference problem (finding the assignment of labels
e that maximizesPr(e|z)) is intractable in its exact form.
However, an approximation of the MAP solution can be
found by combining the sum-product algorithm of Heskes
et al.[18] with the mean field approximation suggested by
Yuille [48].

Precision

6. Fragment Feature Classification

Despite the many complex junction cases described in ! ! ! ! ! ! ! ! !
the previous section, note that all the potentials in our@hod o 01 02z 03 04 05 06 07 08 09 1
are defined in terms of just two probabilities: a unary prob- Recall
ability that an edgelet is off and a pairwise probabilityttha Figure 4. Precision vs. Recall for the entire dataset, shgwhat
an edgelet |S on glven that the precec“ng edgelet |S also OnUSIng .mOFion and g|0ba| inference I’esult.s in the most ?.meura
(Pr(e; = onle; = on, z)) (Though we have not listed them |dent|f|ca_1t|on of those edge fragments which are occlusiojett
here, we also define the four-edgelet junctions in terms of Poundaries.
these same probabilities.) We will now describe a classifier
used to estimate these probabilities, as functions of featu
(=) extracted from labeled training data.

both are labeled “on”. These pairs are our positive exam-

ples while negative examples are collected from those pairs

We use the logistic regression form of Adaboost [9] for for Wh'(.:h ¢; Is Off but is connected via the graph to an
e; that is on. The feature vector for an example pair in-

classification, where the weak learners are decision treescludes the unary features for each fragment. as listed above
Since boosted decision trees are well-suited to feature se- y g ’ a

lection, we provide a variety of appearance and motion fea- augmented by (1) the relative angle between the two frag-

tures, based on the cues described above, and allow the clagTJentS (to capture a notion of continuity), (2) the differ-

sifier to choose the most suitable ones. We discussed varic"'¢© between the ”FO“O”S of the two fragments, and (3) th’e
otion and color differences between the two fragments

ous appearance and motion cues in Section 4, but here ng‘gre round-side seaments. From these examples and aud-
explicitly list thefeaturesderived from those cues which are 9 9 :  examples ar 9
mented features, we learn a second, pairwise classifier. For

provided to the classifier (let;, andsg denote the neigh- ) X ) ; .
boring segments for a given edge fragmeit all our experiments, we allow ten iterations of boostingwit
. ten-node decision trees.
e Appearance Features:averagePb-strength along;,
length ofe;, ratio ofe;'s length to the longer perime- 7 Results

ter of s;, and sg, difference in area between the

andsg, difference in average color (in LAB space) be- To train and evaluate our approach, we require sequences
tweens;, andsg, andy?-distance between color dis- of images. Thus, existing databases for evaluating ob-
tributions estimated within, and sy (i.e. a Pb-like ject segmentation and boundary detection, most notably the
operation on segments). popular Berkeley Segmentation Dataset (BSDS) [23], are

o Motion Features: absolute differences between indi- inappropriate for our task [39]. We have therefore created
vidual v andv motion components, simple Euclidean a datasétconsisting of 30 short video sequences (approx-
distance between motion vectors, confidences of mo-imately 10-20 frames each) with a wide variety of con-
tion estimates (derived from the amount of gradient tent [39]: indoor and outdoor scenes, uncontrolled vaeiabl
within a segment or the curvature of a fragment), and lighting, a range of scene depttetc Each exhibits very
the Mahalanobis-like motion consistency score defined brief camera motion, instantaneous motion of objects in the
in [40]. Each of these features is computed from com- scene, or a combination of the two. The dataset has not
parisons betwees;, and each of;, andsy as well as been selected specifically to suit our task and contains some
comparisons betweern, andsr themselves. very difficult cases. Our task is to detect occlusion bound-

Given a set of training data, we apply the over- aries fpr the middle (reference) frame of ea_ch sequence,

: o for which we have labeled ground truth regions to indi-
segmentation and the fragment-chaining approaches dei:ate object/occlusion boundaries as well as the side of each

SDoundary which is the foreground. By using this dataset,

we intend to provide quantitative results in addition to the

anecdotal examples often presented in motion segmentation

We then train a unary classifier directly from the individual
ground truth labels and the features as listed.

For the pairwise classifier, we first extract pairs of frag-
ments in the ground truth for which; follows e; and 2htt p: // wwv. cs. cmu. edu/ ~st ei n/ occl usi on_dat a/
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Figure 5. Example result: The appearance-only classifirls of

dataset in aggregate. The parameter varied in creating each
plot is the threshold on the likelihood ratio of each fragten
being on or off. We see that using appearance cues alone
results in the worst performance. In fact, note that reason-
ing with motion cues on individual fragments, hwithout
global inference, offers equivalent or superior resulenth
global inference used with appearance cues alone. Finally,
global inference wittcombinedmotion and appearance in-
formation consistently yields the highest precision. Also
note that the low precision at 100% recall (corresponding
to the trivial solution of labelingll fragments as occlusion
boundaries) provides some indication of the difficulty of ou
task and our dataset.

While aggregate statistics captured by the precision re-
call plots are useful for understanding quantitative perfo
mance in general, they do hide important semantic measures
of quality which can only be understood by looking at in-
dividual results. In Figures 5-7, we provide a few such ex-
amples out of the 30 in our database. In each, the reference
image of the sequence and the ground truth labeling are pro-
vided in the top row. In the remaining rows we compare
the use of appearance only (left column) to that of appear-
ance and motion combined (right column). The second row
displays fragments overlaid on the image with brightness
and line width proportional to the confidence that they are
occlusion boundaries according to th&idependentlas-
sification resultsi(e. before global inference). Thus, the
brighter red and thicker a fragment is, the more the system
believes it to be an occluding boundary. The next row dis-
plays the same type of result batter performing global
inference on the initial classifications. The final two rows
show these global inference results thresholded at equal re
call rates for fair comparison. It is interesting to notettha
the motion+appearance approach sustains higher precision
(i.e. fewer false positives) even as the recall is increased.
This indicates that the motion adds significant confidence
to the classifier’s decision.

It is not surprising that there are several scenes in our
database for which motion does not help because some ob-
jects simplyare well-segmented by basic appearance cues,
such as color, or the scenes may lack enough texture (or

confidence becomes obvious when we use use a higher-reeall opdepth variation) to provide the necessary relative motion

erating point. With the addition of motion, very high precisis
maintained. (Static scene, handheld camera motion: desama

timeters.) [Best viewed in color.]

work.

After over-segmentation, there are approximately 20,000
total fragments available for testing and training, on vahic
we perform a correspondence procedure to extract groun

truth labels.

We would like to verify that both global inference and
motion information result in improved performance overall

cues. However, it is also very rare that using mothmts
performance, and in those cases where appearance infor-
mation alone doesot capture the properties of occlusion
boundaries well, motion cues often provide substantial im-
provement. Much of this improvement is due to reduced
false positives, since motion information may allow the-sys
tem to recognize and filter out high-contrast surface mark-

d’ngs which confuse an appearance-only approach.

8. Conclusion

We have proposed a framework for introducing mo-

We see in Figure 4 that this is indeed the case by plottingtion as a cue in detection and grouping of object/occlusion

precision vs. recall for final fragment labeling of the eatir

boundaries. The use of motion and occlusion for object
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Figure 6. Example result: Using motion allows for sustaihiggh

precision, even at higher recall. (Dynamic scene, staticera.) . . . .
[Best viewed in color.] tected boundaries to improve object segmentation. And be-

cause our labeled fragments are naturally linked to arainiti
over-segmentation, we can use feedback between the two
processes (segmentation and boundary detection) in order
to improve them both in an iterative fashion. Also, addi-
€tional information can be extracted as to which of the two
neighboring segments at a contour fragment is on the fore-
round object. Initial results indicate that the framework
escribed here can also be used for this level of labeling.

segmentation, discovery, and “pop-out”, which is funda-
mentally important to general scene understanding, is- well
established in psychophysics and perception. Given th
increasing availability of and interest in temporal data fo
computer vision applications, the use of motion cues will
offer substantial performance gains over methods based o
static appearance cues only. In our experiments, we have
demonstrated that motion is indeed helpful in finding these

boundaries, when used in a statistical classifier applied toREfG"rences
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