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Abstract

While great strides have been made in detecting and lo-
calizing specific objects in natural images, the bottom-up
segmentation of unknown, generic objects remains a dif-
ficult challenge. We believe that occlusion can provide a
strong cue for object segmentation and “pop-out”, but de-
tecting an object’s occlusion boundaries using appearance
alone is a difficult problem in itself. If the camera or the
scene is moving, however, that motion provides an addi-
tional powerful indicator of occlusion. Thus, we use stan-
dard appearance cues (e.g. brightness/color gradient) in
addition to motion cues that capture subtle differences in
the relative surface motion (i.e. parallax) on either side of
an occlusion boundary. We describe a learned local classi-
fier and global inference approach which provide a frame-
work for combining and reasoning about these appearance
and motion cues to estimate which region boundaries of
an initial over-segmentation correspond to object/occlusion
boundaries in the scene. Through results on a dataset which
contains short videos with labeled boundaries, we demon-
strate the effectiveness of motion cues for this task.

1. Introduction

There has been great progress in the last few years in
recognizingspecific objects in images, but the more general
problem ofdetectinggeneral, never-before-seen objects re-
mains a challenge. For example, how may we determine a
telephone sitting on our desk is an object separate from its
surroundings, without already knowing what a telephone is?
Or as Adelson and Bergen put it [2], how do we distinguish
the “things” from the “stuff”?

This problem is variously known as object segmenta-
tion, pop-out, or figure-ground labeling. The basic prob-
lem is to extract contours that delineate scene objects or,
alternatively, to extract regions corresponding to objects,
based on a variety of visual cues estimated from the input
image. Many cues have been proposed in relation to this
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Figure 1. We develop a framework for object/occlusion boundary
detection combining appearance cues, subtle, instantaneous mo-
tion cues, learned classifiers, and a global inference technique.

problem, most notably those based on the Gestalt principles.
Though largely a product of human studies, many of these
cues have received significant attention in computer vision,
e.g. [3, 17, 22, 47]. Most of these cues can be exploited in
a single image, but ours is a temporal experience, and in-
creasingly image sequences and video are becoming com-
monplace. Thus another potentially powerful cue, and one
which is well-known in psychophysics, is that of motion –
specifically relative motion discrepancies at depth discon-
tinuities. Traditionally studied in controlled laboratory ex-
periments [4, 8, 26, 42], such motion cues have received
comparatively little attention for the purpose of object pop-
out in computer vision,e.g. [3, 7, 29, 34].

We propose to revisit the use of motion cues in extract-
ing occluding contours as a step toward identifying object
boundaries in a scene, with the hope of eventually enabling
complete segmentation of those objects. We use subtle mo-
tion cues, such as parallax induced by a moving camera,
in reasoning about these crucial boundaries which separate
“things” in a scene. Here, we will begin with an over-
segmentation of the image, with the assumption that the
true object boundaries of interest are a subset of the frag-
mented boundaries formed by the regions (orsegments)
in that over-segmentation. Next we will extract a com-
bination of appearance and motion cues [39] for the seg-
mentsand the contour fragments that separate them. These
cues will in turn generate features for a classifier trained



to distinguish fragments that are merely surface markings
from those that are object/occlusion boundaries. Finally,by
learning a notion of fragment connectivity and construct-
ing a factor graph to model fragment and junction inter-
dependencies, we will perform global inference to find the
optimal labeling of the fragments jointly. Using this ap-
proach, we will demonstrate improved object boundary la-
beling when (a) using motion information and (b) addition-
ally using global inference.

2. Related Work

Prior attempts to use motion cues to extract object con-
tours (or object segmentations implying the contours) can
be divided roughly into two groups: those that segment re-
gions directly from the motion input, and those that detect
contours via some local computation on the motion data.
The first category includes approaches that attempt to in-
fer segmentation or scene structure directly from reasoning
about large-scale occlusions observed through dynamic ob-
ject motion [6, 30] and/or the use of multiple, calibrated
cameras for obtaining silhouettes [15].

Also in this category is layered motion segmentation,
in which regions are segmented from an input image se-
quence based on the consistency of motion within each re-
gion, e.g. [30, 38, 45]. Most of these techniques use a
parametric motion model for each layer, and employ var-
ious techniques for estimating those models and for assign-
ing pixels to the correct layer/model. Typical models are
restricted to near-planar, rigidly-moving regions. In addi-
tion, many approaches assume a known, fixed number of
layers in the scene and/or do not scale well as that number
increases. We argue that attempting to explain the scene in
terms of a specific number of motion-consistent connected
regions may not be necessary, and instead we propose to de-
tect a large fraction of the objects’ boundaries by estimating
local motion cues and using them in a statistical classifier
combined with a mechanism to enforce global consistency.
Quite recently, a method forbinary segmentation of video
was presented which combats some of the difficulties of lay-
ered motion segmentation methods by combining clustered
motion features (akin to the textons popularized by recog-
nition research) with a boosted tree-based classifier [46].

In the second category, techniques have been developed
based on the observation that occluding contours can be de-
fined as extremal boundaries, where the viewing ray is tan-
gent to the object’s surface. This led to the development of
algorithms that rely on an explicit geometric model of the
motion of occluding contours [20, 36, 37, 43]. These ap-
proaches are appealing because they rely on well-defined,
mathematically correct, geometric models. However, one
drawback is their sensitivity to deviations of the actual data
from the model. An alternative is to use an implicit model,
either learned from local motion cues estimated from train-
ing data or based on some fixed model of the distribu-
tion of motion cues in the vicinity of occluding bound-

aries [5, 14, 28, 40]. Our work falls in this general cate-
gory in that we do not attempt to preciselymodelthe mo-
tion of occlusion boundaries directly. Instead we rely on the
statistical modeling of (relative) local motion cues at those
boundaries.

Finally, although we focus in this paper on the use of
motion cues, considerable prior work exists in extracting
boundaries from a single image. Two major threads emerge
from this line of work. The first one is the idea of combining
multiple cues into a single boundary classifier [19, 24, 11].
The second key idea, largely due to Ren [32], is to use the
region boundaries of an image’s (over-)segmentation as ini-
tial candidates to be labeled as occluding/non-occluding,
thereby inducing a labeling of the regions as figure/ground.
We build upon each of these ideas in our work. We combine
many local cues into a single classifier, with the difference
that we use motion cues in addition to appearance cues. We
also start with an over-segmentation of the image, with the
goal of filtering it to retain only those region boundaries
that correspond to physical object boundaries. In addition,
we use a novel model for inferring a globally consistent la-
beling of the boundary fragments.

Figure 2. Example input sequence (left), with initial contour
fragments and junctions from over-segmentation of center frame
(right).

3. Initial Segments and Fragments

We initially oversegment the image in order to gener-
ate candidate boundary fragments and associated regions
of support for our motion and appearance features. An-
other option could be to start from edge detections and
then perform an edge chaining procedure, as in [21, 38]
for example. But edge chaining is inherently brittle in nat-
ural cluttered scenes, and perhaps more importantly, the
over-segmentation approach offers two distinct advantages
for later higher-level reasoning. First, by construction,
fragments come together whenever regions meet, and thus
closed contours are immediately available. This produces
a natural graph structure suitable for global inference with-
out the need to impose artificially such structure later (e.g.
with Constrained Delaunay Triangulation [31]). Second, a
direct link is established between fragments and segments.
It is clear that a set of segments in an image imply a set of
boundaries, but working in the opposite direction to obtain
a segmentation from a set of disconnected boundary frag-
ments is non-trivial.



We use a watershed segmentation driven by the output of
the Pb detector [24] after non-local maxima suppression.
We chose the watershed approach for its more regularly-
shaped segments as compared to other methods [10, 13],
and its speed compared to methods relying on normalized
cuts [27, 33]. An example over-segmentation can be seen in
Figure 2.

From the over-segmentation, we construct a contour
graph by chaining together a set of fragments along the
boundaries of each segment, starting and stopping at junc-
tions with other segments (see Figure 2). Rather than op-
erating at the level of pixels when chaining, however, we
instead use the “cracks” between the pixels. These cracks
naturally form a graph and offer a very simple, efficient do-
main on which to chain. In addition, a maximum of four
fragments can meet at a junction, limiting the number of
junction labeling cases we must consider when doing the
global inference described later.

4. Computing Cues

Given segments and fragments from the segmentation,
the next step is to compute a set of cues associated with
each fragment. The cues should be chosen for their poten-
tial utility in estimating the likelihood that a fragment ison
an occluding contour.

In a single image, many low-level appearance cues are
available to indicate boundaries, including differing texture,
color, or brightness. Motion cues are necessary because
many appearance cues prominent at physical boundaries are
also produced by simple surface markings. We use two
main motion cues in this work. The first one is based on
the relative motion of patches extracted on either side of a
fragment [40]. At occlusion boundaries, there may exist an
inconsistency in motion due to parallax induced by the ob-
server’s motion, dynamic objects in the scene, or both. The
second motion cue is based on the observation that we can
compare the segment motions not only to each other butto
the motion of the fragments which they neighbor. Consider
the common case in which the foreground side of a bound-
ary is nearly texture-less and is moving against a cluttered
background. The foreground patch motion may be difficult
to estimate accurately due to the lack of texture, but we can
still use the fact that the occlusion boundary is “owned” by
the foreground surface and should move consistently with
it [38]. More practically, it should moveinconsistentlywith
the background patch. By recognizing this discrepancy, we
can still detect the occlusion.

In this work, we are interested in the estimation and
analysis of the instantaneous motions of fragments and seg-
ments. We do not explicitly track either over long periods
of time. Instead we consider only a few nearby frames in
a short temporal window around the reference frame un-
der consideration. Operating on multiple frames simultane-
ously also results in more stable motion estimates via more
extended temporal integration of information.

4.1. Motion Cue 1: Segment Motion

The segments from Section 3 naturally specify the spa-
tial support for estimating left- and right-side motions for
each boundary fragment. Furthermore, multiple fragments
bound each segment, meaning we can reuse each segment’s
motion estimate for reasoning about several fragments.

We assume a local translational model of motion for
each segment and we use the standard Lucas-Kanade op-
tical flow method for estimating the motion based on lo-
cal spatio-temporal derivatives. We assume that our mo-
tion model is constant within the short temporal window
and thus estimate a single motion for each segment using
its entire spatio-temporal extent at once. Thus we have a set
of equations to be solved by least squares:

[

tIx tIy
...

...

]

[

u

v

]

=

[

It − I0
...

]

, (1)

where t ∈ {−Twin, ..., 0, ..., Twin} represents the frame
number relative toI0 (the reference frame),Ix andIy rep-
resent spatial derivatives within the window inI0, It − I0
are the temporal differences between framet and theI0,
and(u, v) are the components of the estimated translational
motion.

We employ three techniques to reduce the errors in mo-
tion estimation due to pixels close to occlusion boundaries.
First, pixels near the boundary of a segment are weighted
such that they contribute less to the solution. Second,
we use robust (i.e. iteratively re-weighted) least squares to
solve (1). Finally, we place a weak prior on small motions,
since the relative motions we seek are quite subtle.

4.2. Motion Cue 2: Fragment Motion

A second cue that will contribute to the classification of
a fragment is the motion of the fragment itself. Since we
do not yet know whether a fragment lies on an occlusion
boundary (that is precisely what we hope to establish), it
would be dangerous to employ local patches of appearance
data (i.e. the neighboring segments) to estimate its motion
by simple tracking. Instead, we need to estimate the mo-
tion of each fragmentindependentlyfrom the motion of
neighboring segments. This can be accomplished by taking
advantage of the fact that moving edges sweep out spatio-
temporal surfaces over time [1, 7, 16, 29, 41]. Specifically,
at each position along a fragment, we align the axes of a
spatio-temporal cylindrical detector to the local orientation
of the edge. By comparing the distributions of intensity and
color within each half of the cylinder at varioustemporal
orientations, we can find the speed of the moving edge in
the direction normal to its spatial orientation. This approach
is a temporal extension of the “compass” filter [25, 35], also
used by thePb detector [24]. It is thus quite similar to the
recent approach of [41], but since spatial orientation is spec-
ified, only a cylindrical (one-DOF) speed detector is needed



rather than a spherical (two-DOF) speed-plus-orientation
detector.

This approach only offers (1D) estimates of normal mo-
tions at each edge pixel due to the aperture problem. We
can, however, combine the normal estimates along the frag-
ment to get a full 2D motion estimate of the whole frag-
ment [12, 44]1. In our approach, we again use robust least
squares to solve a linear system of equations:

[

nx,i ny,i

...
...

]

[

u

v

]

=

[

wi

...

]

(2)

wherenx,i andny,i are the components of the unit normal at
point i on the fragment, andwi is the corresponding speed
from the spatio-temporal detector.

5. A Global Boundary Model

Given appearance information and motion estimates
along fragments and within the segments they separate, our
goal is to classify which fragments are occlusion bound-
aries. While we hope that local appearance and motion
cues will provide strong evidence for this classification, it
is unreasonable to hope that apurely local solution will
suffice. To capture the structure of our problem and facili-
tate global reasoning and propagation of local estimates, we
define a global model utilizing the graph of contour frag-
ments and junctions implied by the reference frame’s over-
segmentation (Section 3). In the following, we refer to edge
fragments (oredgelets), ei, with labels “on” and “off” indi-
cating occlusion and non-occlusion, respectively.

Our objective is to maximizePr(e|x), the probability of
all the edgelet labels given the cuesx extracted from the
data. Given the structure defined by the graph induced by
the over-segmentation, this probability can be written as a
product of factors. Recalling that the use of pixel cracks
advantageously limits the number of fragments meeting at
any given junction to either three or four, each factor cor-
responds either to an individual edgelet or to a junction of
edgelets,

Pr(e|x) ∝
∏

i

ψ(ei)
∏

k

φk (3)

whereψ(ei) represents the potential function for an indi-
vidual edgeletei andφk represents the potential function
for the set of edgelets meeting at junctionk, {ej}j=1...Nk

,
whereNk ∈ {3, 4}.

The unary potentialψ(ei) is defined such that it only
contributes to (3) ifei is labeled “off,”

ψ(ei) =

{

1 ei = on
Pr(ei = off|x) ei = off

(4)

1Note that perfectly straight fragments will still only permit estimation
of purely normal motion, but we provide a measure of fragmentcurvature
to the classifier to help capture this uncertainty (see Section 6).

The junction potentialφ is evaluated for all junctions de-
pending on the labeling of their constituent fragments, al-
though we will only specify the three-edgelet junctions here
for the sake of brevity.

Though three edgelets, each with three possible labels,
would imply 27 total possible label combinations for a
given junction, there are in fact only five possible config-
urations (up to circular permutations of the edgelets) once
we rule out impossible cases. These are shown in Figure
3, with the shaded regions indicating foreground, and the
darkest region being the closest one.

(i) (ii) (v)(iv)(iii)

e3 e2

e1

e3 e2

e1

e3 e2

e1

e3 e2

e1

e3 e2

e1

Figure 3. The five types of three-edgelet junctions. The shaded re-
gions are the foreground regions, with darker being closer.By con-
vention, the foreground region (shaded) is to the left of thedirec-
tion indicated by the arrow for those edges that are “on”. Edgelets
with no arrow are “off”.

For illustration, let us consider the first configuration
shown in the figure, type(i). There, the factorφ must com-
bine two types of information. First,e1 ande3 are part of the
physical boundary of the occluding region on the left, and
e1 precedese3 when walking along this boundary. There-
fore, the likelihood ofe3 being labeled “on” is conditioned
on e1 also being labeled “on” (and on the cues from the
data). We denote this byPr(e3 = on|e1 = on, x). The
second term inφ measures how likely it is thate2 is an oc-
cluding edge given local evidence, orPr(e2 = on|x). The
product of these two terms results in the expression for a
factor of junction type(i), as indicated in Table 1.

A similar reasoning yields the expressions ofφ for the
other junctions types. Note thatφ = 1 for junction type
(iii) in which none of the edgelets are labeled as occluding
edges, indicating it does not convey any information in the
original probability model. Furthermore, in types(iv) and
(v), the “off” edgelets’ probabilities are not factored into the
potentials. For all these cases, theunaryfactors will express
the likelihood of these edgelets being off, so we need not
(double-)count this information in the junction factors.

Type Potential (φ)
(i) Pr(e3 = on|e1 = on, x) Pr(e2 = on|x)
(ii) Pr(e2 = on|e3 = on, x) Pr(e1 = on|x)
(iii) 1
(iv) Pr(e2 = on|e3 = on, x)
(v) Pr(e3 = on|e2 = on, x)

Table 1. Junction potentials corresponding to junction types in Fig-
ure 3.



Pr(e|x) can now be computed for any assignment of la-
bels to edgelets: for each junction we find the junction type
induced by the labeling and we use the corresponding ex-
pression ofφ to compute the contribution of the junction.
The inference problem (finding the assignment of labels
e that maximizesPr(e|x)) is intractable in its exact form.
However, an approximation of the MAP solution can be
found by combining the sum-product algorithm of Heskes
et al. [18] with the mean field approximation suggested by
Yuille [48].

6. Fragment Feature Classification

Despite the many complex junction cases described in
the previous section, note that all the potentials in our model
are defined in terms of just two probabilities: a unary prob-
ability that an edgelet is off and a pairwise probability that
an edgelet is on given that the preceding edgelet is also on.
(Pr(ei = on|ej = on, x)) (Though we have not listed them
here, we also define the four-edgelet junctions in terms of
these same probabilities.) We will now describe a classifier
used to estimate these probabilities, as functions of features
(x) extracted from labeled training data.

We use the logistic regression form of Adaboost [9] for
classification, where the weak learners are decision trees.
Since boosted decision trees are well-suited to feature se-
lection, we provide a variety of appearance and motion fea-
tures, based on the cues described above, and allow the clas-
sifier to choose the most suitable ones. We discussed vari-
ous appearance and motion cues in Section 4, but here we
explicitly list thefeaturesderived from those cues which are
provided to the classifier (letsL andsR denote the neigh-
boring segments for a given edge fragmentei):
• Appearance Features:averagePb-strength alongei,

length ofei, ratio of ei’s length to the longer perime-
ter of sL and sR, difference in area between thesL

andsR, difference in average color (in LAB space) be-
tweensL andsR, andχ2-distance between color dis-
tributions estimated withinsL andsR (i.e. a Pb-like
operation on segments).

• Motion Features: absolute differences between indi-
vidualu andv motion components, simple Euclidean
distance between motion vectors, confidences of mo-
tion estimates (derived from the amount of gradient
within a segment or the curvature of a fragment), and
the Mahalanobis-like motion consistency score defined
in [40]. Each of these features is computed from com-
parisons betweenei and each ofsL andsR as well as
comparisons betweensL andsR themselves.

Given a set of training data, we apply the over-
segmentation and the fragment-chaining approaches de-
scribed in Section 3 and compute each of the above features.
We then train a unary classifier directly from the individual
ground truth labels and the features as listed.

For the pairwise classifier, we first extract pairs of frag-
ments in the ground truth for whichei follows ej and
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Figure 4. Precision vs. Recall for the entire dataset, showing that
using motion and global inference results in the most accurate
identification of those edge fragments which are occlusion/object
boundaries.

both are labeled “on”. These pairs are our positive exam-
ples while negative examples are collected from those pairs
for which ei is off but is connected via the graph to an
ej that is on. The feature vector for an example pair in-
cludes the unary features for each fragment, as listed above,
augmented by (1) the relative angle between the two frag-
ments (to capture a notion of continuity), (2) the differ-
ence between the motions of the two fragments, and (3) the
motion and color differences between the two fragments’
foreground-side segments. From these examples and aug-
mented features, we learn a second, pairwise classifier. For
all our experiments, we allow ten iterations of boosting with
ten-node decision trees.

7. Results

To train and evaluate our approach, we require sequences
of images. Thus, existing databases for evaluating ob-
ject segmentation and boundary detection, most notably the
popular Berkeley Segmentation Dataset (BSDS) [23], are
inappropriate for our task [39]. We have therefore created
a dataset2 consisting of 30 short video sequences (approx-
imately 10-20 frames each) with a wide variety of con-
tent [39]: indoor and outdoor scenes, uncontrolled variable
lighting, a range of scene depths,etc. Each exhibits very
brief camera motion, instantaneous motion of objects in the
scene, or a combination of the two. The dataset has not
been selected specifically to suit our task and contains some
very difficult cases. Our task is to detect occlusion bound-
aries for the middle (reference) frame of each sequence,
for which we have labeled ground truth regions to indi-
cate object/occlusion boundaries as well as the side of each
boundary which is the foreground. By using this dataset,
we intend to provide quantitative results in addition to the
anecdotal examples often presented in motion segmentation

2http://www.cs.cmu.edu/∼stein/occlusion data/
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Figure 5. Example result: The appearance-only classifier’slack of
confidence becomes obvious when we use use a higher-recall op-
erating point. With the addition of motion, very high precision is
maintained. (Static scene, handheld camera motion: several cen-
timeters.) [Best viewed in color.]

work.
After over-segmentation, there are approximately 20,000

total fragments available for testing and training, on which
we perform a correspondence procedure to extract ground
truth labels.

We would like to verify that both global inference and
motion information result in improved performance overall.
We see in Figure 4 that this is indeed the case by plotting
precision vs. recall for final fragment labeling of the entire

dataset in aggregate. The parameter varied in creating each
plot is the threshold on the likelihood ratio of each fragment
being on or off. We see that using appearance cues alone
results in the worst performance. In fact, note that reason-
ing with motion cues on individual fragments, butwithout
global inference, offers equivalent or superior results than
global inference used with appearance cues alone. Finally,
global inference withcombinedmotion and appearance in-
formation consistently yields the highest precision. Also
note that the low precision at 100% recall (corresponding
to the trivial solution of labelingall fragments as occlusion
boundaries) provides some indication of the difficulty of our
task and our dataset.

While aggregate statistics captured by the precision re-
call plots are useful for understanding quantitative perfor-
mance in general, they do hide important semantic measures
of quality which can only be understood by looking at in-
dividual results. In Figures 5-7, we provide a few such ex-
amples out of the 30 in our database. In each, the reference
image of the sequence and the ground truth labeling are pro-
vided in the top row. In the remaining rows we compare
the use of appearance only (left column) to that of appear-
ance and motion combined (right column). The second row
displays fragments overlaid on the image with brightness
and line width proportional to the confidence that they are
occlusion boundaries according to theirindependentclas-
sification results (i.e. before global inference). Thus, the
brighter red and thicker a fragment is, the more the system
believes it to be an occluding boundary. The next row dis-
plays the same type of result butafter performing global
inference on the initial classifications. The final two rows
show these global inference results thresholded at equal re-
call rates for fair comparison. It is interesting to note that
the motion+appearance approach sustains higher precision
(i.e. fewer false positives) even as the recall is increased.
This indicates that the motion adds significant confidence
to the classifier’s decision.

It is not surprising that there are several scenes in our
database for which motion does not help because some ob-
jects simplyare well-segmented by basic appearance cues,
such as color, or the scenes may lack enough texture (or
depth variation) to provide the necessary relative motion
cues. However, it is also very rare that using motionhurts
performance, and in those cases where appearance infor-
mation alone doesnot capture the properties of occlusion
boundaries well, motion cues often provide substantial im-
provement. Much of this improvement is due to reduced
false positives, since motion information may allow the sys-
tem to recognize and filter out high-contrast surface mark-
ings which confuse an appearance-only approach.

8. Conclusion

We have proposed a framework for introducing mo-
tion as a cue in detection and grouping of object/occlusion
boundaries. The use of motion and occlusion for object
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Figure 6. Example result: Using motion allows for sustainedhigh
precision, even at higher recall. (Dynamic scene, static camera.)
[Best viewed in color.]

segmentation, discovery, and “pop-out”, which is funda-
mentally important to general scene understanding, is well-
established in psychophysics and perception. Given the
increasing availability of and interest in temporal data for
computer vision applications, the use of motion cues will
offer substantial performance gains over methods based on
static appearance cues only. In our experiments, we have
demonstrated that motion is indeed helpful in finding these
boundaries, when used in a statistical classifier applied to
contour fragments generated from an over-segmentation of
the image. In our continuing work, we will use these de-
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Figure 7. Example result: This more difficult example, the mo-
tion+appearance classifier still performs best. (Static scene, hand-
held camera motion: several centimeters.) [Best viewed in color.]

tected boundaries to improve object segmentation. And be-
cause our labeled fragments are naturally linked to an initial
over-segmentation, we can use feedback between the two
processes (segmentation and boundary detection) in order
to improve them both in an iterative fashion. Also, addi-
tional information can be extracted as to which of the two
neighboring segments at a contour fragment is on the fore-
ground object. Initial results indicate that the framework
described here can also be used for this level of labeling.
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