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Abstract. We propose a category-independent method to produce a
bag of regions and rank them, such that top-ranked regions are likely
to be good segmentations of different objects. Our key objectives are
completeness and diversity: every object should have at least one good
proposed region, and a diverse set should be top-ranked. Our approach
is to generate a set of segmentations by performing graph cuts based
on a seed region and a learned affinity function. Then, the regions are
ranked using structured learning based on various cues. Our experiments
on BSDS and PASCAL VOC 2008 demonstrate our ability to find most
objects within a small bag of proposed regions.

1 Introduction

Humans have an amazing ability to localize objects without recognizing them.
This ability is crucial because it enables us to quickly and accurately identify
objects and to learn more about those we cannot recognize.

In this paper, we propose an approach to give computers this same ability
for category-independent localization. Our goal is to automatically generate a
small number of regions in an image, such that each object is well-represented
by at least one region. If we succeed, object recognition algorithms would be
able to focus on plausible regions in training and improve robustness to highly
textured background regions. The recognition systems may also benefit from
improved spatial support, possibly leading to more suitable coordinate frames
than a simple bounding box. Methods are emerging that can provide descriptions
for unknown objects [1, 2], but they rely on being provided the object’s location.
The ability to localize unknown objects in an image would be the first step
toward having a vision system automatically discover new objects.

Clearly, the problem of category-independent object localization is extremely
challenging. Objects are sometimes composed of heterogeneous colors and tex-
tures; they vary widely in shape and may be heavily occluded. Yet, we have
some cause for hope. Studies of the human visual system suggest that a func-
tioning object localization system can exist in the absence of a functioning object
identification system. Humans with damage to temporal cortex frequently ex-
hibit a profound inability to name objects presented to them, and yet perform
similar to healthy controls in tasks that require them to spatially manipulate
objects [3]. Many objects are roughly homogeneous in appearance, and recent
work [4] demonstrates that estimated geometry and edges can often be used to
recover occlusion boundaries for free-standing objects. While we cannot expect
to localize every object, perhaps we can at least produce a small bag of proposed
regions that include most of them.
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Our strategy is to guide each step of the localization process with estimated
boundaries, geometry, color, and texture. First, we create seed regions based on
the hierarchical occlusion boundaries segmentation [4]. Then, using these seeds
and varying parameters, we generate a diverse set of regions that are guided
toward object segmentations by learned affinity functions. Finally, we take a
structured learning approach to rank the regions so that the top-ranked regions
are likely to correspond to different objects. We train our method on segmented
objects from the Berkeley Segmentation Dataset (BSDS) [5], and test it on BSDS
and the PASCAL 2008 segmentation dataset [6]. Our experiments demonstrate
our system’s ability for category-independent localization in a way that gener-
alizes across datasets. We also evaluate the usefulness of various features for
generating proposals and the effectiveness of our structured learning method for
ranking.

2 Related Work

Here, we relate our work to category-dependent and category-independent meth-
ods for proposing object regions.

Category Dependent Models: By far, the most common approach to ob-
ject localization is to evaluate a large number of windows (e.g., [7, 8]), which
are found by searching naively over position and scale or by voting from learned
codewords [9, 10], distinctive keypoints [11, 12], or regions [13]. These methods
tend to work well for objects that can be well-defined according to a bound-
ing box coordinate frame when sufficient examples are present. However, this
approach has some important drawbacks. First, it is applicable only to trained
categories, so it does not allow the computer to ask “What is this?” Second,
each new detector must relearn to exclude a wide variety of textured background
patches and, in evaluation, must repeatedly search through them. Third, these
methods are less suited to highly deformable objects because efficient search re-
quires a compact parameterization of the object. Finally, the proposed bounding
boxes do not provide information about occlusion or which pixels belong to the
object. These limitations of the category-based, window-based approach supply
some of the motivation for our own work. We aim to find likely object candi-
dates, independent of their category, which can then be used by many category
models for recognition. Our proposed segmented regions provide more detail to
any subsequent recognition process and are applicable for objects with arbitrary
shapes.

Segmentation and Bags of Regions: Segmentation has long been pro-
posed as a pre-process to image analysis. Current algorithms to provide a single
bottom-up segmentation (e.g., [14, 15] are not yet reliable. For this reason, many
have proposed creating hierarchical segmentations (e.g., [16, 4, 17]) or multiple
overlapping segmentations (e.g., [18–21]). Even these tend not to reliably pro-
duce good object regions, so Malisiewicz et al. [19] propose to merge pairs and
triplets of adjacent regions, at the cost of producing hundreds of thousands of
regions. In our case, the goal is to segment only objects, such as cars, people,
mugs, and animals, which may be easier than producing perceptually coherent or
semantically valid partitionings of the entire image. This focus enables a learn-
ing approach, in which we guide segmentation and proposal ranking with trained
classifiers.
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Input Image Hierarchical Segmentation Proposed Regions Ranked Regions

Fig. 1: Our pipeline: compute a hierarchical segmentation, generate proposals, and rank
proposed regions. At each stage, we train classifiers to focus on likely object regions
and encourage diversity among the proposals, enabling the system to localize many
types of objects. See section 3 for a more detailed overview.

An alternative approach is to attempt to segment pixels of foreground ob-
jects [22] or salient regions [23, 24]. However, these approaches may not be suit-
able for localizing individual objects in cluttered scenes, because a continuous
foreground or salient region may contain many objects.

Two concurrent works have also considered generating object proposals as a
preprocess for later stages of classification. First, Alexe et al. [25] consider an
“objectness” measure over bounding boxes, which they use to bias a sampling
procedure for potential object bounding boxes. However, they are limited to the
restricted expressiveness of a bounding box. Alternatively, Carreira and Smin-
chisescu [26] consider a similar region proposal and ranking pipeline to ours.
Segmentations are performed using graph cuts and simple color cues, and the
regions are ranked through classification based on gestalt cues with a simple
diversity model. Our approach guides segmentation with a learned affinity func-
tion, rather than setting the image border to background. We also differ in our
structured learning approach to diverse ranking.

To summarize our contributions: 1) we incorporate boundary and shape cues,
in addition to low-level cues to generate diverse category independent object re-
gion proposals, and 2) introduce a trained ranking procedure that produces a
small diverse set of proposals that aim to cover all objects in an image. We thor-
oughly evaluate each stage of the process, and demonstrate that it can generalize
well across datasets for a variety of object categories.

3 Overview of Approach

Since our goal is to propose candidates for any object in an image, each stage of
our process must encourage diversity among the proposals, while minimizing the
number of candidates to consider. Our procedure is summarized in Figure 1. To
generate proposals for objects of arbitrary shape and size, we adopt a segmenta-
tion based proposal mechanism that is encouraged to only propose regions from
objects.

Rather than considering only local color, texture, and boundary cues, we in-
clude long range interactions between regions of an image. We do this by consid-
ering the affinity for pairs of regions to lie on the same object. This set of regions
is chosen from a hierarchical segmentation computed over occlusion boundaries.
To generate a proposal, we choose one of these regions to seed the segmentation,
and compute the probability that each other region belongs to the same object
as this seed. The affinities are then transferred to a graph over superpixels from
which we compute segmentations with a variety of parameters. By computing
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the affinities over regions first and then transferring them to superpixels, we get
the benefit of more reliable predictions from larger regions while maintaining the
flexibility of a superpixel based segmentation. After repeating this process for
all seed regions, we obtain an initial bag of proposals.

In our effort to discover a diverse set of objects, our proposal mechanism
may generate many redundant or unlikely object candidates. In both cases, we
would like to suppress these undesirable proposals, allowing us to consider better
candidates first. This motivates a ranking procedure that provides an ordering for
a bag of proposals which simultaneously suppresses both redundant and unlikely
candidates. We can then uncover a diverse set of the good object proposals with
far fewer candidates.

Our ranker incrementally adds proposals, from best to worst, based on the
combination of an object appearance score and a penalty for overlapping with
previously added proposals. By taking into account the overlap with higher
ranked proposals, our ranker ensures that redundant regions are suppressed,
forcing the top ranked regions to be diverse. This is especially important in
images with one dominant object and several “auxiliary” objects.

4 Proposing Regions

We first generate a large and diverse bag of proposals that are directed to be
more likely to be object regions. Each proposal is generated from a binary seg-
mentation, which is seeded with a subregion of the image. This seed is assumed
to be foreground, and a segmenter selects pixels likely to belong to the same
foreground object as the seed.

4.1 Hierarchical Segmentation

We use regions and superpixels from a hierarchical segmentation as the building
blocks for our proposal mechanism. To generate the hierarchical segmentation,
we use the output of the occlusion boundary algorithm from Hoiem et al. [4]
(the details of this algorithm are not relevant to our paper). The occlusion al-
gorithm outputs four successively coarser segmentations, with a probability of
occlusion and of the figure/ground label for each boundary in the segmenta-
tion. From each segmentation, we compute a probability of boundary pixel map
and a figure/ground probability pixel map, and we average over the segmenta-
tions. Then, we create our hierarchical segmentation with agglomerative group-
ing based on boundary strength, as in [16], and we use the boundary strength
and figure/ground likelihoods as features.

4.2 Seeding

A seed serves as the starting point for an object proposal. The appearance and
boundaries around the seed are used to identify other regions that might belong
to the same object. Seeds are chosen from the hierarchical segmentation such
that they are large enough to compute reliable color and texture distributions.
Also, we remove regions with boundaries weaker than 0.01 , since these are likely
to just be a portion of a larger region. Stronger boundaries also facilitate the
use of boundary cues to determine the layout of the object with respect to the
regions.
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4.3 Generating Segmentations

CRF Segmentation: To generate a proposal, we infer a foreground / back-
ground labeling l, li ∈ {0, 1} over superpixels. Given a seed region, defined by
a set of superpixels S, we construct a CRF that takes into account each su-
perpixel’s affinity for the seed region and the probability of boundaries between
adjacent superpixels:

P (l|X,S, γ, β) ∝ exp
(∑

i

f(li;S,X, γ) + β
∑
{i,j}∈N

g(li, lj ;X)
)

(1)

Here, f(li;S,X, γ) is the superpixel affinity term, inferred from image features
X, and g(li, lj ;X) is the edge cost between adjacent superpixels (defined by
set of neighbors N). This CRF is parametrized by the foreground bias γ and
the affinity/edge trade-off β. By varying these parameters for each seed, we can
produce a more diverse set of proposals. We choose five γ values from between
[−2, 2], and five β values from [0, 5].

Affinity: To compute the superpixel affinity f(li;S,X, γ), we first compute
each region R’s affinity for lying on the same object as the seed S. We learn
the foreground probability P (lR|S,X) with a boosted decision tree classifier.
Positive training examples are generated from pairs of regions that lie on the
same object. Negative examples use pairs with one region lying on an object,
and the other region lying on another object or the background.

The classifier uses features for cohesion, boundary, and layout cues, as sum-
marized in Table 1. Cohesion is encoded by the histogram intersection distances
of color and texture (P1). Boundary cues are encoded by considering the cost to
pass across boundaries from one region to the other. This path across boundaries
is the straight line between their centers of mass (P2).

Feature Description Length
P1. Color,Texture histogram intersection 2
P2. Sum,Max strength of boundary crossed between centers of mass 2
L1. Left+Right layout agreement 1
L2. Top+Bottom layout agreement 1
L3. Left+Right+Top+Bottom layout agreement 1

Table 1: Features computed for pairs of regions for predicting the likelihood that the
pair belongs to the same object. These features can capture non-local interactions
between regions, producing better segmentations.

We introduce a new layout feature. Given occlusion boundaries and fig-
ure/ground labels, we predict whether a particular region is on the left, right,
top, bottom, or center of the object. These predictions are made by boosted
decision tree classifiers based on histograms of occlusion boundaries, where the
boundaries are separated based on figure/ground labels. As a feature, we mea-
sure whether the layout predictions for two regions are consistent with them
being on the same object. For example, if one region predicts that it is on the
left of the object and a second region to the right of the first predicts that it
is on the right side of the object, those regions are consistent. We construct a
layout score for horizontal, vertical, and overall agreement (L1− L3).
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Since the CRF is defined over superpixels, the region affinity probabilities
are transfered to each superpixel i by averaging over the regions that contain
it. The terms of this average are weighted by the probability that each region
R is homogeneous (P (HR)), which is predicted from the appearance features in
Table 2:

P (li = 1|S,X) =

∑
{R|i∈R} P (HR) · P (lR = 1|S,X)∑

{R|i∈R} P (HR)
. (2)

Note that we now have labels for superpixels (li) and for regions (lR). We use
P (li|S,X) to compute the affinity term f(li;S,X, γ):

f(li;S,X, γ) =


0 : li = 1, i ∈ S
∞ : li = 0, i ∈ S

− ln
(
P (li=0|X)
P (li=1|X)

)
+ γ : li = 1, i 6∈ S

(3)

The infinite cost ensures that superpixels belonging to the seed are labeled
foreground.

Edge Cost: The edge cost enforces a penalty for assigning different labels
to adjacent superpixels when their separating boundary is weak. This boundary
strength is computed from the occlusion boundary estimates for each pair of
adjacent superpixels i, j: P (Bi,j |X).

g(li, lj ;X) =
{

0 : li = lj
− lnP (Bi,j |X) : li 6= lj

(4)

This edge cost produces a submodular CRF, so exact inference can be computed
quickly with a single graph-cut [27] for each seed and parameter combination.
Proposals with disconnected components are split, and highly overlapping (≥
97%) proposals are pruned. Further non-maximum suppression is handled in the
ranking stage.

5 Ranking Proposals

We now introduce a ranker that attempts to order proposals, such that each
object has a highly ranked proposal. This ranker encourages diversity in the
proposals allowing us to achieve our goal of discovering all of the objects in the
image. Below, we detail our objective function, which encourages top-ranked re-
gions to correspond to different objects and more accurate object segmentations
to be ranked higher. Then, we explain the image features that we use to rank
the regions. Finally, we describe the structured learning method for training the
ranker.

Formulation: By writing a scoring function S(x, r; w) over the set of pro-
posals x and their ranking r, we can take advantage of structured learning.
The goal is to find the parameters w such that S(x, r; w) gives higher scores to
rankings that place proposals for all objects in high ranks.

S(x, r; w) =
∑
i

α(ri) ·
(

wT
aΨ(xi)−wT

p Φ(ri)
)

(5)
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The score is a combination of appearance features Ψ(x) and overlap penalty
terms Φ(r), where r indicates the rank of a proposal, ranging from 1 to the
number of proposals M . This allows us to jointly learn the appearance model and
the trade-off for overlapping regions. Φ1(r) penalizes regions with high overlap
with previously ranked proposals, and Φ2(r) further suppresses proposals that
overlap with multiple higher ranked regions. The second penalty is necessary to
continue to enforce diversity after many proposals have at least one overlapping
proposal:

Φ1(ri) = max
{j|rj<ri}

ov(i, j) (6)

Φ2(ri) =
∑

{j|rj<ri}

ov(i, j) (7)

The overlap score is computed as the area of two regions’ intersection divided
by their union, with Ai indicating the set of pixels belonging to region i:

ov(i, j) =
|Ai ∩Aj |
|Ai ∪Aj |

(8)

Each proposal’s score is weighted by α(r), a monotonically decreasing func-
tion. Because higher ranked proposals are given more weight, they are encour-
aged to have higher scores. We found that the specific choice of α(r) is not
particularly important, as long as it falls to zero for a moderate rank value. We
use α(r) = exp

(
(r−1)2

σ2

)
, with σ = 150.

Computing maxr S(x, r; w) cannot be solved exactly, so we use a greedy
approximation that incrementally adds the proposal with the maximum marginal
gain. We found that this works well for a test problem where full enumeration is
feasible, especially when ov(·, ·) is sparse, which is true for this ranking problem.

Representation: The appearance features Ψ(x) characterize general prop-
erties for typical object regions, as summarized in Table 2. Since this is a category
independent ranker, we cannot rely on finely tuned category dependent shape
and appearance models. However, we can expect object boundaries to respect
occlusion boundaries, so we encode the probability that the exterior is occluded
by or occluding another region. We also encode the probability of interior bound-
aries, which we expect to be small.

Additionally, certain “stuff-like” regions can be quickly identified as back-
ground, such as grass and sidewalks, so we learn a pixel based probability of
background classifier on LabelMe [28], and characterize the response within the
region. We also use the confidence of the vertical solid non-planar geometric
class, using trained classifiers from [29], which is noted to often correspond to
object classes. Finally, we encode the differences between color and texture dis-
tributions between the object and background. We compute the difference in
histograms between the object and two regions: the local background region
surrounding the object and the entire background.

Learning: To solve the structured learning problem, we use the slack-rescaled
method with loss penalty used in [30]. This method finds the highest scoring la-
beling, rather than the most violated constraint, and adds an additional cost to
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Table 2: Features used to describe the appearance of a proposal region. It is important
that each of these features generalize across all object categories, including ones never
seen during training.

Feature Description Length
B1. Mean,max probability of exterior boundary 2
B2. Mean,max probability of interior boundary 2
B3. Mean,max probability that exterior occludes 2
B4. Mean,max probability of exterior being occluded 2
S1. Min,mean,max,max-min probability of background 4
S2. Min,mean,max,max-min probability of vertical surface 4
S3. Color,texture histogram intersection with local background 2
S4. Color,texture histogram intersection with global background 2

the objective to penalize for high loss candidates:

min
w,ξn

1
2
||w||2 +

C1

N

∑
n

ξn +
C2

N

∑
n

L(r(n), r̂(n)) (9)

s.t. ∀r ∈ P (n)\r(n),∀n
S(x(n), r(n); w)− S(x(n), r; w) ≥ 1− ξn

L(r(n),r)

ξn ≥ 0
wp ≥ 0

,

where, for image n, r(n) is the ground truth ranking, r̂(n) = argmaxr∈P (n)S(x(n), r; w)
is the highest scoring proposal, and P (n) is the set of valid labellings, in this case,
the set of permutations over regions. The cutting plane approach avoids having
to exhaustively enumerate the resulting intractable set of constraints.

The loss L must enforce two properties: higher quality proposals should have
higher ranks (L1), and each object o in the set of objects O should have a highly
ranked proposal (L2):

L(r, r̂) = 1
2L1(r, r̂) + 1

2L2(r, r̂)
L1(r, r̂) = 1

|O|
∑
o∈O

∑
{(i,j)|ri<rj} I[ov(i, o) < ov(j, o)]

L2(r, r̂) = 1
|O|
∑
o∈O min{i|ov(i,o)≥50%} ri

(10)

To learn this structured model, we iteratively find the highest scoring ranking
for an image, update w with this new constraint, and repeat until the change in
w is small.

6 Experiments and Results

We perform experiments on the Berkeley Segmentation Dataset (BSDS) [5] and
the Segmentation Taster images from PASCAL VOC 2008 [6]. All training and
parameter selection is performed on the BSDS training set, and results are eval-
uated on BSDS test and the PASCAL validation set. For both datasets, a ground
truth segmentation is provided for each object. For BSDS, we label object re-
gions by merging the original ground truth segments so that they correspond to
objects.

Qualitative results from both PASCAL and BSDS are sampled in Figure 2.
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Fig. 2: Results from the proposal and ranking stages on BSDS (first 3 rows) and PAS-
CAL 2008 (last 3 rows). The left column shows the 3 highest ranked proposals, The
center column shows the highest ranked proposal with 50% overlap for each object.
The right column shows the same for a 75% threshold. The number pairs displayed
on each proposal correspond to rank and overlap, respectively. The desk scene demon-
strates the diversity of our ranking. The train and deer demonstrate the high quality
of proposals.
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6.1 Proposal Generation

To measure the quality of a bag of proposals, we find the best segmentation
overlap score for each object (BSS). From this, we can characterize the overall
quality of segments with the mean BSS over objects, or compute the recall by
thresholding the BSS at some value, and counting the number of objects with a
BSS of at least this threshold. For our experiments, we set the threshold to 50%
unless otherwise noted. A pixel-wise overlap threshold of 50% is usually, but not
always, more stringent than a 50% bounding box overlap.

Features: The most commonly used features for segmentation are color and
texture similarity, so we use this as a baseline. We then add the boundary crossing
and layout features individually to see their impact. Finally, we combine all of the
features to obtain our final model. To measure the performance of each feature,
we consider the area under the ROC curve (AUC) for affinity classification, the
best segment score, and recall at 50%. The results are shown in Table 3.

The first thing to note is that the addition of both the boundary and lay-
out features are helpful for both datasets. In addition, we find that the affinity
classification performance cannot fully predict a feature’s impact on proposal
performance. It is important to also consider how well the features facilitate
producing a diverse set of proposals. Features that cause prediction to be more
dependent on the seed region will produce a more diverse set of proposals.

BSDS PASCAL
Feature AUC Recall BSS AUC Recall BSS
Color,Texture (P1) 0.72 75.4 % 0.655 0.68 78.8% 0.67
C,T + Boundary Crossing (P1,P2) 0.77 81.8% 0.671 0.76 79.7% 0.68
C,T + Layout (P1,L1,L2,L3) 0.74 82.9% 0.679 0.71 81.1% 0.68
All (P1,P2,L1,L2,L3) 0.83 84.0% 0.69 0.80 79.7% 0.68

Table 3: A comparison of how features impact affinity classification (AUC), recall @
50% overlap, and best segment score (BSS). Both classification accuracy and diversity
of proposals must be considered when choosing a set of features.

Proposal Quality: We define similar baselines to [19]. The first baseline is
to use each region from the hierarchical segmentation as an object proposal. The
second baseline is to merge all pairs of adjacent regions, which achieves higher
recall but with many more proposals. We can also measure the upper bound on
performance by choosing the best set of superpixels for each object region.

It is clear from Figure 3 that the initial hierarchical segmentation is not well
suited for proposing object candidates. After merging proposals, the segmenta-
tion quality is comparable to our method, but as Figure 6 shows, it produces
more than an order of magnitude more proposals. For both datasets, our method
produces more high quality proposals for overlaps greater than 65%.

Finally, we provide a breakdown of recall for individual categories of the
PASCAL dataset in Figure 4. These results are especially promising, because
many of the categories with high recall, such as dog and cat, are difficult for
standard detectors to locate. The low performance for categories like car and
sheep is mainly due to the difficulty of proposing small regions (< 0.5% of the
image area, or < 1000 pixel area), especially when the objects are in crowded
scenes. The dependence of recall on area is shown in Figure 5.
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Fig. 3: These curves characterize the quality of proposals from each method, showing
the percentage of objects recalled for a given overlap %. For BSDS, we generate better
proposals for all levels of overlap. For PASCAL, we outperform the baselines for higher
recall levels and are still comparable at 50% overlap. These results are impressive
because we consider 20-30 times fewer regions.

6.2 Ranking Performance

We compare our ranking method to three baselines. The first method scores each
proposal independently, and the ranking is produced by sorting these scores from
high to low, as in [26]. Positive examples are chosen from a pool proposals with
at least 50% overlap with some object and negative examples have no more than
35% overlap with any object. The second baseline includes the overlap penalty of
our method, but learns the appearance model and trade-off terms separately. The
final baseline simply assigns random ranks to each proposal. This can be seen
as encouraging diversity without taking into account appearance. To evaluate
the quality of our ranker, we measure the number of objects recalled when we
threshold each image’s bag at a certain size. The results are presented in Figure 6.

We find that by jointly learning the appearance and suppression models, our
method outperforms each of the baselines. Because the independent classifier
does not encourage diversity, only the first object or object-like region is given a
high rank, and the number of proposals required to recall the remaining objects
can be quite high. In fact, when considering more than 10 proposals, the ran-
dom ranker quickly outperforms the independent classifier. This emphasizes the
importance of encouraging diversity. However, both models that include both
appearance models and overlap terms outperform the random ranker. Finally,
by learning with an appropriate loss and jointly learning the model, we achieve
small but noticeable gains over the baseline with an overlap term.

7 Discussion

We have introduced a procedure that generates a small, but diverse set of
category-independent object proposals. By incorporating the affinity predictions,
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Fig. 4: Recall for each object category in PASCAL. These results are quite promising
because many of the categories with high recall are difficult for standard object detec-
tors to recognize. For many categories, most of the instances can be discovered in the
first 100 proposals.
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Fig. 5: Recall vs. object size: The plot shows the percentage of recalled objects based
on their area, relative to the image size. Histogram bin edges are indicated by solid
vertical lines. This demonstrates that uncovering smaller objects is more difficult than
larger objects, but nearly 60% of objects between 0.3% and 0.8% of the image are still
recovered. This is due to weaker object cues and because the region overlap criteria is
more sensitive to individual pixel errors for smaller objects. The dashed lines also show
the proportions of the dataset for each object size.

we can direct the search for segmentations to produce good candidate regions
with far fewer proposals than standard segmentations. Our ranking can further
reduce the number of proposals, while still maintaining high diversity. Our ex-
periments show that this procedure generalizes well and can be applied for many
categories.

The results on PASCAL are especially encouraging, because with as few as
100 proposals per image, we can obtain high recall for many categories that stan-
dard scanning window detectors find difficult. This is quite amazing, considering
that the system had never seen most of the PASCAL categories during training!

Beyond categorization, our proposal mechanism can be incorporated in ap-
plications where category models are not available. When presented with images
of new objects, our proposals can be used in an active learning framework to
learn about unfamiliar objects. Alternatively, they can be used for automatic
object discovery methods such as [20]. Combined with the description based
recognition methods [1, 2], we could locate and describe new objects.
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Fig. 6: Recall vs. number of proposals per image: When considering recall for more than
10 proposals per image, enforcing diversity (Random) is a more important than object
appearance (Classifier). Combining diversity and appearance (Classifier + Overlap)
improves performance further, and jointly learning both (Full model) gives further
gains.

While this method performs well in general, it has difficulty in cases where
the occlusion boundary predictions fail and for small objects. These are cases
where having some domain knowledge, such as appearance or shape models
can complement a generic proposal mechanism. This suggests a joint approach
in which bottom-up region proposals are complemented by part or category
detectors that incorporate domain knowledge.
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