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Abstract

Most image understanding algorithms begin with the ex-
traction of information thought to be relevant to the par-
ticular task. This is commonly known as feature extraction
and has, up to this date, been a largely manual process,
where a reasonable method is chosen through validation on
the experimented dataset. In this work we propose a data
driven, local histogram based feature extraction method
that reduces the manual intervention during the feature
computation process and improves on the performance of
widely used gradient histogram based features (e.g., HOG).
We demonstrate favorable object detection results against
HOG on the Inria Pedestrian[7/], Pascal 2007[10] data.

1. Introduction

Carefully engineered, gradient-based patch descriptors,
such as HOG[7] and SIFT[21], have become a staple of
computer vision algorithms. Object detection, image clas-
sification, registration, and many other applications benefit
from local descriptors that enable robust correspondence.
Due to their importance, much research has gone into ex-
ploring variations on the feature representations, normaliza-
tion, and pooling of HOG and SIFT. Most efforts take the
simple gradient as the basic building block.

Our paper demonstrates that replacing gradient filters
with a set of more general, learned 3x3 filters leads to ma-
jor improvement in object detection. The filters are con-
strained to be zero-mean and unit-norm, encoding the in-
tuition that contrast is most informative. The filters are
learned by K-medoid clustering with a cosine distance on
3x3 patches that are sampled with a bias that favors high-
contrast patches. Local descriptors are created by summing
the filter responses within a small cell (e.g., 8 X 8 square
group of pixels) and applying L1-sqrt normalization. Our
experiments support the importance of these details, and
we validate the general utility of our descriptor on several
datasets. On INRIA pedestrians, our descriptors outperform
HOG with a 50% reduction in miss rate. By replacing HOG
with our descriptor in the latest Felzenszwalb et al. detec-

tors, we improve results in PASCAL VOC 2007 for 15 out
of 20 categories.

A key advantage of the proposed descriptor is that it
can be directly integrated into existing learning frameworks
using similar block descriptors such as [13] or multilevel
pyramid-like representations (e.g., [1], [16])

We give a brief background of relevant image representa-
tions in Section 2. In Section 3, we describe the filter learn-
ing process and explain the relation to HOG and SIFT. In
Section 4, we describe implementation details for efficient
computation and how to apply our representation to object
detection and interest point matching. Our experiments val-
idate the design decisions and demonstrate state-of-the-art
performance on several datasets in Section 5. Finally, we
discuss directions for further evaluation and development
in Section 6.

2. Background

Efficient and robust representations of visual data are
of major interest in vision research and generally are one
of the most important factors defining the ultimate perfor-
mance of algorithms. Simple wavelet-like filters, which
have shown very good performance in face[25] and pedes-
trian detection[23], are one of the early examples of descrip-
tors with both efficient computation and high discriminative
performance. When the contours of the object can be suc-
cessfully extracted, Shape Contexts of Belongie et al. [5],
which is a histogram of edge points, with log polar bins
around the center of the object, have shown good perfor-
mance in matching and recognition. Ahonen et al.[2] pro-
posed binary representations of intensity changes around
pixels as a representation of local texture. The so called
local binary patterns are especially useful in applications
where the texture is the main source of information.

The most relevant type of representation to this work
is the histogramming of gradient orientations. Inspired by
Scale Invariant Feature Transform (SIFT [21]), which was
originally intended for resolving the problem of keypoint
correspondence, many variants have been proposed improv-
ing on computational efficiency[ |5, 4] and invariance prop-
erties [24]. Furthermore, densely sampled variants of SIFT



with no alignment for orientation have been proven very
useful for detection of objects with reasonably rigid part
appearances[7, 27]. A successful application of represent-
ing local appearances through clustering of filter responses
has been studied by Leung and Malik [18] in the context
of texture recognition, which further suggests that our ap-
proach may yield good results under the detection setting.
Recently, there has been interest in optimizing feature
representations through learning. LeCun et al.[17] have pi-
oneered use of convolutional neural networks for bottom up
learning of object detectors, where the first learned layer
consists of patch level filters. Dictionary based image rep-
resentations can also be improved through iterative sub-
gradient methods[19] or through sparse coding [26, 22].
However such dictionary optimization methods are diffi-
cult to apply in low level representations because of var-
ious non—convexities caused by the use of heuristics such
as block-normalization of histograms, max-clipping of bins
and weighted histogramming. Furthermore learned meth-
ods tend to yield object or task specific representations,
whereas the representation proposed in this work is general.

3. Overview

We propose a new feature transformation for encoding
local blocks of image information for discriminative pur-
poses. Inspired by block-descriptors such as HOG and
SIFT, multiple local histograms of appearance information
is grouped and normalized together to form a local descrip-
tor. The key difference from aforementioned feature trans-
formations is that the locally pooled appearance informa-
tion is not an orientation histogram, but rather a less restric-
tive set of ”snippets” of appearance.

When studying SIFT and HOG closely, a general pat-
tern of feature extraction emerges. The first step usually in-
volves extraction some low level image information through
utilization of basic image filters (e.g., directional gradient
filters). In the next step, this local information is spa-
tially pooled through a local histogramming process, which
groups the information from these local patches according
to a pre—defined vocabulary. Finally, one frequently normal-
izes locally neighboring groups of these histograms. This
process is useful for histograms built using the magnitudes
of local information patches as weights because the nor-
malization process ameliorates feature magnitude variations
due to changes in local contrast.

A feature of the directional gradient filters is that they
are 0-mean and have unit norm. Unit norm property en-
sures that no filter response is unfairly biased in building
the histogram since the magnitude of the filter response is
used as the histogram voting weight. The 0-mean property
has biological justification because it is well known that hu-
man visual system is more sensitive to local changes in the
contrast than the absolute brightness of the signal[6].

3.1. Patch Dictionary

We propose to replace the gradient orientations with gen-
eral filters that preserve the unit norm and 0-mean properties
but are empirically learned from data and thus can capture
the statistical properties of the underlying visual structures
better than manually constructed filters.

The first step is to define a vocabulary of image patches
through clustering. Staying faithful to gradient based im-
age representations, we define the similarity measure in the
space of d x d image patches to be the dot product of vec-
torized representations of the image patches:

s(Pi,Pj) = P, P; (1)

, where ¢ and j denote the pixel indexes and p;, is the vec-
torized representation of a d x d patch centered at the pixel
Di.

Dot product as the similarity measure is frequently uti-
lized in the document retrieval research under the term “co-
sine similarity” and is tied naturally to the popular variant
of the k-means algorithm known as spherical k-means [9],
which groups points based on their cosine similarity. This
method is different from regular k-means because the un-
derlying probability distribution of the points is no longer
assumed to be mixture of k unit variance Gaussians, and fur-
thermore, as the name implies, spherical k-means produces
clusters on the unit hypersphere, whereas cluster centers of
regular k-means are the means of the clusters.

However spherical k-means can not be applied directly
to build representations of local image patches, because un-
like word frequency histograms used in document retrieval,
the values of convolving the filters with an image does not
necessarily have positive or 0 responses, and therefore the
cosine similarity is not guaranteed to be positive in all cases.
This difference in data domain does not affect the conver-
gence of the spherical k-means clustering algorithm because
the objective function is still bounded, but presents the prac-
tical question whether an image patch is more similar to
a patch with 0 or a small positive correlation value than a
patch with a very high negative correlation (i.e., its contrast
negative). Another way of thinking about this is whether
one prefers the representation to be contrast sensitive or in-
sensitive. In the case of former, cosine similarity shall be
used, while for the latter, taking the absolute value of the
cosine similarity is appropriate. Using the absolute cosine
similarity is equivalent to assuming that dark-to-bright gra-
dient is equivalent to bright-to-dark gradients in the same
direction. As shown by Dalal and Triggs [7] for pedestrian
detection, the direction of the contrast change is not very
relevant for detecting objects of objects with large variation
in appearance (e.g., pedestrians appear in arbitrary clothing
standing against arbitrary backgrounds). Unless otherwise
noted, we will be assuming the use of absolute cosine simi-



larity in the rest of the paper.

In order to cluster image patches using absolute cosine
similarity as the similarity measure, we propose a modified
spherical k-means algorithm using sample medoids as op-
posed to sample means. The proposed spherical k-medoids
algorithm is summarized in Algorithm 1. The main mo-
tivation for using medoids instead of means is due to the
lack of definition for a meaningful center of mass of points
when using cosine similarity. But an additional advantage
is obtained in terms of speed. Since the solution has to be
a subset of initial points, the local minima are quite stable.
This leads to quick convergence in practice. In our experi-
ence, we have found that the algorithm with 1 million initial
points quickly converges to a local minimum within 10-20
iterations regardless of k.

Algorithm 1 spherical k-medoids clustering
Input: Set of training points with zero mean and unit
norm to be clustered:
X = {x1,%X2,...,Xn}
Initialize K cluster centers M = {my, ..
lecting K exemplars from the set y [3].
Initialize clustering fitness: C' = 0
while AC' > 0 do
For each x; set y; = argmax;, | x! my, |
Update each cluster k:
my, < argmaxy, 3_; 0(k —y;) [ x{x; |
C 32,30 0(k —yi) | x] my |
end while

.,myg} by se-

Similar to well known k-means algorithm, the first step
in the outer loop associates each training sample with the
maximally similar cluster center. In the second step, for
each cluster, the training sample that is most similar to all
other samples assigned to the same cluster is chosen as
the new cluster exemplar. Again, similar to k-means, k-
medoids is also sensitive to initialization. In order to rem-
edy the effect of bad initialization, we pick the initial k£ cen-
ters using a maximum dissimilarity criterion analogous to
the k-means++ method [3].

Sample selection

The training set for dictionary learning is collected from a
set of natural, greyscale images, and we used the same dic-
tionary in all of the experiments. We limited the size of
the training set of patches to be around one million, which
seems to produce clusters with good variety. Appearance
prior of image patches in natural images is not uniform.
Smooth structures such as uniform patches or ramp discon-
tinuities comprise most types of patches. Unfortunately,
from a discriminative standpoint, such patches are rarely
interesting. Boundary patches with sharp edge content are
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Figure 1. Visualization of patch modeling accuracy of representa-
tions. Each curve shows the ratio of randomly sampled patches in
the training dataset for which there is at least one dictionary item,
whose cosine similarity is at least the value on the vertical axis.

more useful. Thus for dictionary learning, we perform a bi-
ased sampling of image patches when collecting the train-
ing set. The probability of the patch being sampled as an
exemplar is proportional to the strength of the pixel inten-
sity contrast within the patch:

PR oy — u(pi)1]| )

, where 11(p;) denotes the average pixel intensity within the
patch p;.

The modeling properties of the learned dictionaries can
be readily observed on Fig. 1. With a learned dictionary size
of 100 codewords, only less than 10% of randomly sampled
patches do not have a cluster center, whose dot product with
the patch is larger than 80% of the patch magnitude. Also,
the dictionary trained with bias-sampled data is slightly bet-
ter at modeling than the dictionary trained with uniformly
sampled patches. The modest gap of 100 item dictionaries
with the HOG dictionary (Section 3.2), is not surprising be-
cause as the number of dictionary items approaches infinity,
all patches should have an arbitrarily close neighbor in the
dictionary. However, even a trained dictionary of 9 items,
where the size is equal to the HOG dictionary, is still able
to demonstrate significantly better modeling performance.

3.2. Connection to Gradient Orientations

Gradient histogram based feature transformations can be
thought of as dictionary based representations of local im-
age patches. To illustrate this, note that image gradient ori-
entations are computed through measuring the responses of
two filters: h, and h,, corresponding to horizontal and ver-
tical gradient filters. Equation 3 shows an example pair of
commonly used gradient filters. While a more sophisticated
filter pair [14] can potentially yield more accurate gradi-
ent information, in practical cases, statistics obtained by ac-
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Figure 2. Visualization of a patch dictionary of 3 x 3 patches learned using spherical k-medoids. The dictionary contains 100 elements
and the elements are ordered by the frequency they appear in the training set with the most frequent dictionary item being on the top left
and the least frequent on the bottom right. The most frequent patches appear to be horizontal and vertical boundary segments followed by
diagonal boundaries and line-like shapes. Corner, and point-like segments make up the rest of the words.

cumulating the responses of filters with very small support
work better for capturing local appearance information.

0 -1 0 0 00
hy=10 0 O0]|,hz=1|-1 0 1 3)

0 1 0 0 0 0
Let h(zpj ) be the response of the filter h, centered at
the pixel p;. The gradient orientation for the interval

[—90°,90°] at pixel p; is given by:
tan—1 (hépj)/h:(tpj)) (4)
Quantizing this orientation information is equivalent to

finding the maximally responding filter from the following
set:

0 —sin(6,) 0
hn = | —cos(0,) 0 cos(6y,) (5)
0 sin(6,,) 0
180° x n

where IV is the number of quantization levels.
The histogram descriptor of one cell can be expressed as
the following:

fo="Y_ 9(pj,hn) )
Pj€c
Tyio . T12
| _ [pFh2, ifn = argmax,, (p'hZ)
9(pj,hy,) = { 0 else ®

Note that this is essentially a histogram based represen-
tation, by doing a locally constant estimation of 3 x 3 patch
appearances. According to the default feature parameters,

the appearance constants in the case of SIFT is 8 and HOG
is 9 respectively. This is arguably a small number for piece-
wise constant modeling of a 9-dimensional signal. Further,
since they all have the structure in Equation 5, they are
placed on a one dimensional manifold (parameterized by
0) on R°.

4. Block Descriptor

The construction of the proposed descriptor is verbatim
to the construction of widely used histogram based descrip-
tors. The atomic unit of information for the descriptor is the
”bag of words”-like histogram of dictionary similarities for
all pixels in a cell. Each block descriptor is the concatena-
tion of ¢ x c neighboring but disjoint cell histograms. The
location of these blocks can either be defined on a dense
rectangular grid for rigid object detection applications or
they can be constructed around interest points produced by
an affine interest point detector.

To construct the descriptor for an image block (Algo-
rithm 2), the image is first convolved with all elements of
the dictionary. Because of the 0-mean property, the ele-
ments of the dictionary can be used directly as filters and it
is not necessary to subtract the mean from each patch. The
image block region contains ¢ X c cells. For each pixel in
these cells, the dictionary element with highest similarity
value is found and a weighted vote equal to this similar-
ity value is accumulated on the histogram bin on the cor-
responding cell. After concatenation of cell histograms in
each block, the block descriptors are normalized with re-
spect to an appropriate norm (the selection of this norm
is further discussed in Section 5). The cell histograms are
computed by pooling the information from d x d pixels. In
the case of SIFT, ¢ = 4 and d = 4, whereas the original
HOG paper sets ¢ = 2 and d = 8 for optimum performance
on INRIA-Pedestrians dataset.



Algorithm 2 Overall construction process of the block de-
scriptor

Given k item dictionary M = {m;, ... my}
Set Cell Size d = 8
Set Block Size ¢ = 2
Initialize N = ¢? cell histograms (H") of length k
Build the cell histograms:
for all p; in cell C,, do
b = argmax,, | p/ my |
HE o]+ = | pmy |
end for
Perform within block normalizgltsion:
nPt = (cheBl >, HO[o]) ™
for all C,, in block B; do
HC « HC [nBi
end for

4.1. Computation and Memory

Dictionary sizes on the order of 100 can produce seem-
ingly high dimensional representations. However the num-
ber of non-zero entries in the cell histograms is upper
bounded by the number of sampled pixels in the cell. There-
fore using a sparse vector representation yields a worst case
maximum of 2 x d? units of memory footprint per cell his-
togram, independent of the dictionary size.

Computation of the filter responses for each of the dic-
tionary items can be performed in parallel very efficiently
using a GPU. Straightforward convolution is the preferred
method for convolutions with small convolution kernels up
to 7 pixels wide [20]. Our CUDA version of the filter-
bank code performs 100 convolutions and reductions with
3 x 3 filters in approximately 2 milliseconds on a GeForce
GTX560 for a 640 by 480 image, whereas the CPU version
of the corresponding code takes 75 milliseconds on a Quad—
Core i5 in multi—threaded code. In our implementation of
HOG features, the filterbank size is 9. The GPU algorithm
takes approximately 0.5 milliseconds.

5. Evaluation

We test the performance of our descriptor on INRIA-
Pedestrian dataset as well as on the 2007 dataset of the Pas-
cal VOC.

INRIA-Pedestrians

INRIA-Pedestrian dataset contains 1208 training images of
pedestrians with their reflections along the vertical median
axis. 566 images of pedestrians with reflections are pro-
vided for testing. The dataset also contains negative training
and testing images that do not contain any people.

For training, we extract the block descriptors based on

concatenation of 2 x 2 cell histograms on a dense grid of
8 x 8 pixels inside a 128 x 64 window centered around
the pedestrian images, which consists our positive training
set. This yields 105 block descriptors of 2 x 2 x k dimen-
sions, where k is the size of the dictionary. Unless otherwise
specified we set k = 100. Negative features are collected
from random 128 x 64 subimages from the negative train-
ing set, which does not contain any images with people in
them. We learn the initial dictionaries from a set of one mil-
lion 3 x 3 image randomly collected image patches. First a
support vector machine classifier is learned with linear ker-
nel. Then this classifier is used to densely scan the negative
training set to look for “difficult” samples, which are falsely
classified as pedestrians by this first stage classifier. A sec-
ond stage classifier is then trained using the initial training
set with the addition of all difficult samples detected by the
first classifier. All of the SVM training is performed through
LIBLINEAR [11], which we have slightly modified to in-
crease memory efficiency tailored to take advantage of the
sparse nature of our proposed representation.

We verify the pedestrian detector by running it on 566
pedestrians (and their mirrors) on the testing set, as well as
all image windows of size 128 x 64 on the negative testing
set at the original scales of the images and downscaled ver-
sions by a scaling step of 1.2 until a no object window can
fit. The window stride length of 8 in horizontal and verti-
cal directions, which yields 2 million image windows with
no pedestrians for testing. The results are reported in the
form of detection error tradeoff curves, where the logarith-
mically scaled x-axis shows the false positives per image
window on the negative set versus the y-axis which plots
the miss rate (1—true positive). First experiment (Figure
3) shows the effectiveness of the proposed descriptor ver-
sus the standard HOG, which is implemented verbatim to
the description in [7]. When building gradient orientation
histograms, soft assignment of weights is known to boost
the performance relative to the histograms build using hard
assignment. However, soft assignment requires a normal-
ization of assignment weights over each dictionary element
per sample point, which becomes costly as the dictionary
size increases. Therefore in our implementation, the soft
assignment method is not utilized.

The normalization of the concatenated histograms in a
block has a profound effect on the performance. While au-
thors in [8] found L2 normalization to work the best on the
normalization of the gradient orientation histograms, L1-
sqrt norm works significantly better in our case (Fig 4).
This can be explained by the high dimensional structure and
sparse nature of our cell histograms. Normalizing with re-
spect to the L2 norm reduces the small values in the his-
togram too aggressively.

For the effects of the dictionary size on the overall detec-
tion performance, conventional wisdom from bag-of-words
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Figure 3. The proposed descriptor yields a false positive rate of
10™* false positives per window at 6.5% miss rate.

Performance impact of block normalization schemes
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Figure 4. Normalization of cell histograms within each block is
essential for optimum performance. Since our histogram is large,
a gentle norm like L1 — sqrt works better.

research carries over, and is also reflected in our results,
where larger dictionaries outperform the smaller ones for
otherwise the same parametrization of the feature. The au-
tomatically learned dictionary of about 9 words narrowly
beats the HOG baseline, which uses a manually constructed
dictionary of 9 items', however as the dictionary size in-
creases, the proposed descriptor becomes more discrimina-
tive. Figure 5 shows the miss rate at 10~ false positives
per window rate for varying dictionary sizes. The returns
start diminishing after 200 words and furthermore increased
computation becomes another consideration for tradeoff.
The size of the sampled patches also has a noticeable
effect on the performance. We tested 3 x 3, 5 x 5 and
7 x 7 patch sizes for training dictionaries. For a constant

I'See [8] for the empirical study of dictionary size on the classification
performance for HOG descriptor.

Performance with Varying Dictionary Size
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Figure 5. The miss rate drops as larger dictionaries are utilized.
However the computational cost also increases linearly for his-
togram computation as k convolutions are required for each fea-
ture transformation.

dictionary size of 100 and all other feature parameters kept
constant, in terms of the miss rate at 10~4 false positive
per window operating point, the 5 x 5 patch dictionary per-
formed 2.53% worse than the dictionary of 3 x 3 patches,
whereas the 7 x 7 dictionary was the worst with 7.67%
increase in miss rate over the 3 x 3 dictionary baseline.
These findings suggest that modeling more complex patches
can become very difficult very quickly as the patch size in-
creases. Furthermore as the base patch size increases, less
and less variety can be captures in terms of local appearance
and texture properties.

Finally a visualization of the trained linear SVM classi-
fier can be seen on Figure 6. The most positively performing
appearance resembles the averaged human pose of the train-
ing images with the positive label. Slight variations in pose
such as bent legs are also seem to be successfully captured
by the learning stage.

Pascal VOC

Pascal VOC provides a challenging dataset and a good
testbed for measuring object detection performance. The
authors of [13], which is one of the state of the art object
detectors, opened the source-code of their parts based ob-
ject detector for free use. The original detector uses HOG,
sign variant (contrast sensitive) HOG and a texture measure
as the base features of their parts detectors. We modified the
source code[ 2] of the parts based detector to operate with
the proposed feature transformation instead of the original
features. The size of the atomic histograms were set to be
8 x 8 pixels. The size of the dictionary used was 50, learned
from the same training set as previous experiments. For
each cell, we produced two histograms: one with cosine
similarity as the similarity measure and the other with ab-
solute cosine similarity. These contrast sensitive and insen-
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Figure 6. A visualization of the classifier trained on the Inria Pedestrians dataset. a) The collage of image blocks in the training samples
with the highest response to the classifier weights for the corresponding block, b) Spatial distribution of the positive classifier weights. ¢)
Spatial distribution of the negative classifier weights. The most distinguishing features of pedestrians are around the head and shoulders
area as well as around the feet. The negative weights are distributed more uniformly, with a slight absence of weights around the detection
window boundaries, which are expected to be mostly background regions regardless of the class label of the detection window.

sitive representations were finally concatenated to produce
the final cell descriptor. All other training parameters were
kept fixed. As can be observed in Fig. 7, our descriptor im-
proves or matches the performance of the baseline detector
at all but 5 object categories.

6. Conclusions

We have described a robust alternative to gradient ori-
entation based image features. Our new proposed fea-
ture transformation adopts many of the carefully engi-
neered properties of previous feature transformations (e.g.,
blockwise contrast normalization, locally constructed his-
tograms), while improving on the power of the unit his-
tograms in representing the underlying image appearance.
The proposed method is directly applicable to all exist-
ing methods using the aforementioned descriptors through
a simple substitution. As it is experimentally demon-
strated, the proposed feature transform offers robust per-
formance on object detection tasks. We would like to
further investigate whether similar performance gains can
be obtained in other areas such as keypoint correspon-
dence problems and representations of spatio-temporal
data.
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