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Lect 6: Graph Partition by Swendsen-Wang Cuts

Topics

1.   Graph partition and labeling
2.   Clustering with bottom-up edge probabilities
3.   Moving in the partition space

Reversible and detailed balance
4. Swendsen-Wang Cuts
5. Examples

segmentation, stereo, and motion etc. 
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Graph partition

vertices

possible values

A graph G=<V, E> is partitioned into an unknown number of sub-graphs

Each subgraph is often assigned a lable or color, thus the partition problem 
is augmented into a graph coloring/labeling problem.

E.g. image segmentation (label), stereo (disparity), motion (velocity), …
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Traversing the partition space
Let ΩL be the partition space of all possible L-way partitions of V

The partition space is denoted by

How do we design a Markov chain to traverse the partition space?
This is a challenging question facing many tasks,

e.g. how can the split-merge operator be made reversible in image segmentation?

So what?   You need to have algorithms that is capable of global optimality independent 
of initial solutions !!
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An example of segmentation

input image

over-segmentation with atomic regions
adjacency graph

graph partition (labeling)image segmentation result

For speed, one can group adjacent pixels of
constant intensity into super-pixels to reduce 
the graph.  (This step has risk, more proper treatment should 
be using multi-level Swendsen-Wang cut, which can freeze and open
the atomic regions.)
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An example of adjacency graph

Each node could be a pixel, atomic region (super-pixel), feature points,…
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Moves in the partition space
A

C

B

split
merge spl

itmerg
e

split + merge

split + merge
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The key issues

A

C

B

1. How do we select a subset of nodes Vo to flip?
2. How do we maintaining reversibility?
3. How do we ensure detailed balance?

What is the probabilities (ratio) for selecting Vo at two reversible states?
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Swendsen-Wang revisited

SW (1987) uses data augmentation and selects Vo by Bernoulli bonds.

Each edge is augmented a bond variable ust ~ Bernoulli(ρ 1(xs=xt)),  ρ=1-e-β.  
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Limitations of SW

Although it works well in Ising/Potts models, SW has the following 
problems that need to be resolved for many vision applications.

1.   It is limited to Ising / Potts models.

2. The number of labels L is fixed and known.

3. The forming of clusters is not informed by data, thus it
slows down in the presence of an external field (data).
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From SW to SW-cut

SW cuts (Barbu and Zhu, ICCV 03, CVPR04) extended SW in three aspects.

1. Generalize SW to arbitrary probabilities on graphs with variable L.
It  can also be made into a generalized Gibbs sampler which flips a CCP at each step

with simple weights on the conditional probabilities. 

2. Using discriminative models (data-driven) for the edge probabilities
The edge probability approaches the marginal posterior probability for how likely
two sites s and t belong to the same color (object surface)

3. Hierarchical coloring in a multi-resolution pyramid representation.



6

ICCV05 Tutorial: MCMC for Vision.                   Zhu / Dellaert / Tu                                                         October        2005

Step 1.  Computing discriminative edge probability

The edge probability is decided by local features.

Histogram Hi

Histogram Hj

is a marginal probability of π(X | I) 1. Konishi et al 01, Ren et al 04
2. Adaboost,  Shapire 00

It approaches the marginal posterior as the number of features increase.
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Clusters (connected components)
by flipping the edge probabilities 

independently

T=1                            T=2                              T=4                              T=8

Sample 1

Sample 2

Sample 3
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Step 2. Computing SW-Cuts

V0

V1

V2

x

x
x

x

x

x

Definition:  A Swendsen-Wang cut is the set of edges between a cluster 
(CCP) and other sites of the same color. 

This is the set of dashed edges marked with crosses.
They must be turned off for V0 being a CCP.
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State A State B

Probability ratio for a pair of SW-cuts

Theorem.  The probability ratio for selecting CCP V0 at states A and B is

V0

V1

V2
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x
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x
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x
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V2
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x

x

xx

xx

x
x
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(Barbu and Zhu, 2003)
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Outline of the proof
We compute the proposal probability ratio:

All configurations of edges that take state A to B must have all edges 
of the cut Cut(Vo,V1-Vo) turned off. 
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Outline of the proof

Cancellation of the sums occurs because of the symmetry between states A and B:
Any CP that takes state A to B is also a CP that takes state B to A

Any configuration of “on” edges in state A appears in state B and 
vice versa

Any configuration of “off” edges in state A appears in state B

State A State B
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State A State B

Step 3. The Metropolis-Hasting Step

Theorem.  The acceptance probability for flipping V0 is

results in an ergodic and reversible Markov Chain.

V0

V1

V2
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Same conclusion when multiple paths exist

State A

State C

State B

A

CB
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1. Initialize a graph partition 
2. Repeat, for current state A= π

State A

The Swendsen-Wang Cuts algorithm

Swendsen-Wang Cuts: SWC
Input:   Go=<V, Eo>, discriminative probabilities qe,  e ∈Eo,  

and generative posterior probability p(W|I).
Output:  Samples X~p(X|I).

7. Select a connected component V0∈CP at random

9. Accept the move with probability α(A→B).

3. Repeat for each subgraph Gl=<Vl, El>, l=1,2,...,n in A
4. For e ∈El turn e=“on” with probability qe.
5. Partition Gl into nl connected components:

gli=<Vli, Eli>, i=1,...,nl
6. Collect all the connected components in

CP={Vli: l=1,...,n, i=1,...,nl}.
V0

CP     

V0

V1

V2

x

x
x

x

x

x

The initial graph Go

8. Propose to reassign V0 to a subgraph Gl’, 
l' follows a probability q(l'|V0,A)  

x

V0

V1

V2

x

x

x

xx

xx

x
x

x

State B
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Acceptance probability can be made always 1

If we select the label probability as

Remark: zero rejection rate may not necessarily be an optimal design.
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Another generalized Gibbs sampler

We denote the probabilities on the SW-cuts Cut(V0, Vk) by weights

Flip the label of a CCP according to a condition probability weighted by the SW-weights

0             1              2                                 n
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SW comes as a special case

Consider the reversible moves between states A and B by Metroplis-Hastings:
the proposal probability ratio is:

the probability ratio of the two states is:
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Then the acceptance probability is always 1.
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Comparison with Gibbs sampler in CPU time

Convergence comparison of SWC-1 and the Gibbs sampler on the cheetah image, starting from a random 
state or from the state where all nodes have label 0. Right – zoom in view of the first 20 seconds.
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Convergence comparison: in seconds

7000 seconds                                       zoom-in view of the first 200 seconds

Another example
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Comparison
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Examples of segmentation

a. input image b. over-segmentation
with atomic regions

c. segmentation result
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Examples of segmentation

a. input image b. over-segmentation
with atomic regions

c. segmentation
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Examples on Stereo Reconstruction

left image

Ground truthLeft image Segmentation result
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Performance comparison with Graph Cuts and 
Belief propagation on a special (simplified) energy
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Hierarchical partition and segmentation

– Level 0: Pixels are grouped into atomic regions
rijk of relatively constant motion and intensity

– motion parameters (uijk,vijk) 
– intensity histogram hijk

– Level 1: Atomic regions are grouped into 
intensity regions Rij of coherent motion
with intensity models Hij

– Level 2: Intensity regions are grouped into 
moving objects Oi with motion parameters θi

X0

X1

X2
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Motion segmentation examples

Image Segmentation Motion SegmentationInput sequence

Image Segmentation Motion SegmentationInput sequence
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Motion segmentation examples

Image Segmentation Motion SegmentationInput sequence

Image Segmentation Motion SegmentationInput sequence
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Summary

– Generally applicable – allows usage of complex 
models beyond the scope of the specialized 
algorithms

– Computationally efficient – performance 
comparable with the specialized algorithms

– Reversible and ergodic – theoretically guaranteed 
to eventually find the global optimum


