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Lect4: Exact Sampling Techniques and
MCMC Convergence Analysis

1. Exact sampling 
2. Convergence analysis of MCMC
3. First-hit time analysis for MCMC--ways to 

analyze the proposals.
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Outline of the Module

• Definitions and terminologies.
• Exact sampling techniques
• Convergence rate and bounds using eigen-based 

analysis.
• First hitting time analysis: ways to analyze the 

proposals.
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A Toy Example
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1. State space. 2. Transition kernel. 3. Initial status.
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Target Distribution
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Communication Class
A state j is said to be accessible from state i if there exists M such Kij(M)>0

Communication relation        generates a partition of the sate space into disjoint 
equivalence classes called communication classes.
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Irreducible
If there exists only one communication class then we call its transition graph to be irreducible 
(ergodic).
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Periodic Markov Chain

For any irreducible Markov chain, one can find a unique partition of graph G into d classes:
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An example: The Markov Chain has period 3 and it 
alternates at three distributions:

(1   0   0) (0   1   0) (0   0   1)
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Stationary Distribution

There maybe many stationary distributions w.r.t K.

Even there is a stationary distribution, Markov chain may not 
always converge to it.
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Burn-in Time

Mixing rate:

It measures how fast Markov chain convergences.

Burn-in time:

This measures how quickly a Markov chain is not biased 
by the starting point        .

The initial convergence time is called the “burn-in” time.
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MCMC Design

In general, for a given target distribution π, we want to 
design a irreducible, aperiodic Markov chain which has 
low burn-in period and mixes fast.

Ideally, x should be as i.i.d as possible.
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Outline

• Definitions and terminologies.
• Exact sampling techniques.
• Convergence rate and bounds using eign-based 

analysis.
• First hitting time analysis: ways to analyze the 

proposals.
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Exact Sampling

A natural and general question we want to ask is:

When do we want to stop a MC?

But how long is long enough?
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Exact Sampling (literature)

Exact (perfect) sampling is a new technique.
J. Propp and D. Wilson, 1996, “Exact sampling with coupled Markov chains and applications to 
statistical mechanics”, Random Structures and Algorithms, 9:223-252.

W. Kendall, 1998, “Perfect simulation for the area-interaction point process”, Probability Towards 
2000, pp.218~234.

J. Fill, 1998, “An interruptible algorithm for exact sampling via Markov chains”, Ann. Applied Prob., 
8:131-162.

Casella et al. 1999, “Perfect slice samplers for mixtures of distributions”, Technical Report BU-1453-
M, Dept. of Biometrics, Cornell University.

L. Breyer and G. Roberts, “Catalytic perfect simulation”, Technical Report, Dept. of Statistics, Univ. 
of Lancaster.

···

Introduction web: http://dbwilson.com/exact/
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Coupling

Define deterministic update function :   where is iid from 
a fixed distribution.

MCs are then coupled.

Definition: Coupling

We say that two chains are coupled if they use the same 
sequence of random numbers from the transitions.
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Coupling from the Past

tT tT

If the two MC coalesce at any time t, they become identical forever after.

The chance of two MC 
meeting at T is                                  
if they are not coupled.
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Coupling from the Past (CFTP)
1. Set the starting value for the time to go back,

2. Generate a random vector

3. Start a chain in each state

and run the chains:

4. Check for coalescence at time 0. If so, common value       is 
returned. Otherwise let                           and repeat 2.
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An Example

Define:
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Convergence

The algorithm produces a random variable distributed exactly 
according to the stationary distribution of the Markov chain.

Propp and Wilson’s Algorithm:

Detailed proof see Propp and Wilson 1996.

Traditional forward MCMC can not guarantee this!

To understand: Since for any states xi, from T0, all MCs collapse 
at time 0.

t0T0-∞
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Computational Issue with CFTP

1. Do we need to check for each T0?

No!

2. What if the state space of x is very big?

Monotone CFTP
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Montonicity and Envelopes
Coupling from the past (CFTP) is a nice theory but it applies only to a 
finite state space with a manageable number of points.

We only need to run Markov chains from

bounding chains

all other MCS.

Monotonicity structure:

There exists an ordering structure       on the space Ω:
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Perfect Slice Sampling

The slice sampling transition can be coupled in order to respect
the natural ordering.

Similar to the Propp and Wilson’s algorithm, we can have a 
perfect monotone slice sampler: 

There is coalescence when
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An Example
Image restoration using CFTP (We know when to stop).

true image observed image
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Some Other Methods

1. Kac’s perfect sampling. (Murdoch and Green 1998).

2. Automtic coupling. (Breyer and Roberts 2000).

3. Forward perfect sampling. (Fill 1998).

4. …..

This is a new direction and has many potential 
promises for MCMC convergence analysis.
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Outline of the Module

• Exact sampling techniques
• Some definitions of MCMC.
• Convergence rate and bounds using eigen-based 

analysis.
• First hitting time analysis: ways to analyze the 

proposals.
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MCMC Convergence

CFTP: I will let you know when to stop once we get there, but 
I can not tell you how long it will take in advance.

How long will a MC converge?

How to estimate n?

A basic MCMC consists of three key components:
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Convergence Analysis (literature)

F. Gantmacher, 1995, “Application of the Theory of Matrices”, Inter Science, New York, .

M. Jerrum and A. Sinclair, 1989 “Approximating the permanent”, SIAM Journal of Computing, 
pp.1149-1178.

J.A. Fill, 1991, “Eigenvalue bounds on convergence to stationarity for non-reversible Markov 
chains”, The Annals of Applied Porbability.

P. Diaconis and J.A. Fill, 1996, “Strong stationary times via a new form of duality”, The Annals of 
Probability, p. 1483-1522.

P. Bremaud, 1999, “Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues”, Springer.

J. Liu, 2000, “Monte Carlo Strategies in Scientific Computing”,  Springer.

R. Maciuca and S.C. Zhu, “First-hitting-time Analysis of Independence Metropolis Sampler”, Journal 
of Theoretical Probability, 2005.

…
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Perron-Frobenius Theorem

m2 is the algebraic multiplicity of l2, i.e. m2 eigen-values that 
have the same modulus.

For any primitive stochastic matrix K, K has eigen-values

Each eigen-value has left and right eigen-vectors
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Perron-Frobenius Theorem

If K is irreducible with period d>1, then there are exactly d distinct 
eigen-values of modulus 1, namely the dth roots of unity, and all 
other eigen-values have modulus strictly less than 1.

For d=1:

Rate of convergence is decided by .
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Markov Design

Given a target distribution π, we want to design an irreducible 
and aperiodic K

But in general x is in a big space and we don’t know the landscape of 
π, though we can compute each π(x).
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Necessary and Sufficient Conditions 
for Convergence

Detailed balance implies stationarity:

Detailed Balance:

Irreducible (ergodic):
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Choice of K

Markov Chain Design:

(1) K is irreducible (egordic).

(2) K is aperiodic (with only one eigen-value to be 1).
(3)

Different Ks have different performances.

There are almost infinite number of ways to construct K given a π.

r equations with unknowns r x r unknowns
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Convergence Rate

The convergence rate depends on :

(1) The second largest eigen-value modulus. 

(2) The initial state.

For any initial distribution  p:

In particular, if we start from a specific state
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We see that the convergence of MCMC is mostly decided by the 
second largest eigen-value modulus from a couple of theorems.

How do we connect the second largest eigen-value modulus 
to our algorithm design?

is the conductance of the transition matrix K.

Jerrum and Sinclair’s theorem:

Bounds of Second Largest Eigen-value 
Modulus
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Conductance

It is the bottleneck of the transition graph!

1

3

The ergodic flow out of B,

The conductance of (K, p):

Define:
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Intuition

This is analogous to traffic network design. To put major resources on big populations.
Problem: (1) We still do not know what is an optimal design strategy.

(2) Any small probability mass matters.
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Outline of the Module

• Definitions and terminologies.
• Exact sampling techniques.
• Convergence rate and bounds using on eigen-

based analysis.
• First hitting time analysis: ways to analyze the 

proposals.
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Metropolis-Hastings Algorithm
Detailed balance:

The previous convergence analysis in terms of K still applies.

But we want to know its behavior w.r.t. Q.

Metropolis-Hastings:
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MCMC Convergence w.r.t. KL Divergence

Suppose we are not limited by a fixed kernel K (inhomogeneous),

The Markov chain is monotonically approaching to the target distribution.

Let        be the distribution at t, and 
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Why is it working?
Detailed balance is satisfied (easy to check!). Therefore,  
π is the stationary distribution of K.

The unspecified part of Metropolis-Hastings  algorithm 
is Q, the choice of which determines, if the Markov 
chain is ergodic.

The choice of Q is problem specific.
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Independent Metropolis Sampler (IMS):

This implies that each move does not depend on the current state. 
This is probably the simplest case in MCMC.

can be computed analytically.

where w(i) = q(i)/π(i), are sorted increasingly, 
w(1)≤w(2)≤…≤w(N).
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Convergence of IMS

The convergence depends on the smallest value of q(i)/π(i).

This is consistent with the previous conductance analysis 
(bottleneck).

But it doesn’t sound right. What if π(1) is 
extremely small and negligible.

The problem is due to the worst case analysis!
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What is the Alternative?

Worst Case  v.s. Average Case

• Assume we are interested in a particular state (the mode of 
some distribution for instance) → search problems.

• One can ask, how fast will the algorithm hit x*, in average 
→ average case analysis.

• This can be much quicker than the total convergence time 
→ worst case scenario!
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First Hitting Times

• Let Ω={1,2,…,N} the state space of a finite Markov chain {Xn}n≥0 
• The first hitting time (f.h.t) of i∈ Ω is defined to be the number 

of steps for reaching i for the first time :

τ(i)= min{n≥0 | Xn=i}

E[τ(i)]- often more relevant than the time to   converge 
to equilibrium (mixing time).
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Bounds

Example: π, q are mixtures of gaussians with N=1000 states.
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Plot of the Expectation with Bounds
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Zoom in around the mode
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Ideally, q=π

Three types of states: 
(1) i is said to be over-informed if q(i)>π(i).
(2) i is said to be under-informed if q(i)<π(i).
(3) i is said to be exactly-informed if q(i)=π(i).
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Equality Cases

at the least informed state(2)

at the most informed state(1)

at the exactly informed states.

(3)
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Take-home Messages of MCMC Convergence

1. MCMC in general converges to the target distribution π.

2. Exact sampling is a technique telling us when it converges. 
(But we don’t know how to measure it.)

3. Eigen-based analysis gives us bounds on the convergence. 
(But it is based on the worst-case scenario.)

4. First-hitting time analysis on IMS gives us intuitive ideas 
about algorithm design. (We still need to remove the 
independence assumptions).

5. ????


